Timezone: »
Poster
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
Jialun Zhang · Salar Fattahi · Richard Y Zhang
In practical instances of nonconvex matrix factorization, the rank of the true solution $r^{\star}$ is often unknown, so the rank $r$of the model can be over-specified as $r>r^{\star}$. This over-parameterized regime of matrix factorization significantly slows down the convergence of local search algorithms, from a linear rate with $r=r^{\star}$ to a sublinear rate when $r>r^{\star}$. We propose an inexpensive preconditioner for the matrix sensing variant of nonconvex matrix factorization that restores the convergence rate of gradient descent back to linear, even in the over-parameterized case, while also making it agnostic to possible ill-conditioning in the ground truth. Classical gradient descent in a neighborhood of the solution slows down due to the need for the model matrix factor to become singular. Our key result is that this singularity can be corrected by $\ell_{2}$ regularization with a specific range of values for the damping parameter. In fact, a good damping parameter can be inexpensively estimated from the current iterate. The resulting algorithm, which we call preconditioned gradient descent or PrecGD, is stable under noise, and converges linearly to an information theoretically optimal error bound. Our numerical experiments find that PrecGD works equally well in restoring the linear convergence of other variants of nonconvex matrix factorization in the over-parameterized regime.
Author Information
Jialun Zhang (University of Illinois Urbana Champaign)
Salar Fattahi (University of Michigan)
Richard Y Zhang (University of Illinois at Urbana-Champaign)
More from the Same Authors
-
2021 : Sign-RIP: A Robust Restricted Isometry Property for Low-rank Matrix Recovery »
Jianhao Ma · Salar Fattahi -
2022 Spotlight: Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution »
Jianhao Ma · Salar Fattahi -
2022 Spotlight: Lightning Talks 2A-1 »
Caio Kalil Lauand · Ryan Strauss · Yasong Feng · lingyu gu · Alireza Fathollah Pour · Oren Mangoubi · Jianhao Ma · Binghui Li · Hassan Ashtiani · Yongqi Du · Salar Fattahi · Sean Meyn · Jikai Jin · Nisheeth Vishnoi · zengfeng Huang · Junier B Oliva · yuan zhang · Han Zhong · Tianyu Wang · John Hopcroft · Di Xie · Shiliang Pu · Liwei Wang · Robert Qiu · Zhenyu Liao -
2022 Poster: Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion »
Jialun Zhang · Hong-Ming Chiu · Richard Y Zhang -
2022 Poster: Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution »
Jianhao Ma · Salar Fattahi -
2021 Poster: Scalable Inference of Sparsely-changing Gaussian Markov Random Fields »
Salar Fattahi · Andres Gomez -
2020 Poster: How many samples is a good initial point worth in Low-rank Matrix Recovery? »
Jialun Zhang · Richard Y Zhang -
2020 Spotlight: How many samples is a good initial point worth in Low-rank Matrix Recovery? »
Jialun Zhang · Richard Y Zhang -
2018 Poster: How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery? »
Richard Zhang · Cedric Josz · Somayeh Sojoudi · Javad Lavaei -
2018 Spotlight: How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery? »
Richard Zhang · Cedric Josz · Somayeh Sojoudi · Javad Lavaei -
2018 Poster: A theory on the absence of spurious solutions for nonconvex and nonsmooth optimization »
Cedric Josz · Yi Ouyang · Richard Zhang · Javad Lavaei · Somayeh Sojoudi