Timezone: »
Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI analyses, and climate science. In these domains, both the model parameters to be inferred and the measurement noise may exhibit a complex spatio-temporal structure. Existing work either neglects the temporal structure or leads to computationally demanding inference schemes. Overcoming these limitations, we devise a novel flexible hierarchical Bayesian framework within which the spatio-temporal dynamics of model parameters and noise are modeled to have Kronecker product covariance structure. Inference in our framework is based on majorization-minimization optimization and has guaranteed convergence properties. Our highly efficient algorithms exploit the intrinsic Riemannian geometry of temporal autocovariance matrices. For stationary dynamics described by Toeplitz matrices, the theory of circulant embeddings is employed. We prove convex bounding properties and derive update rules of the resulting algorithms. On both synthetic and real neural data from M/EEG, we demonstrate that our methods lead to improved performance.
Author Information
Ali Hashemi (Technische Universität Berlin)
Yijing Gao (University of California, San Francisco)
Chang Cai (CCNU)
Sanjay Ghosh (University of California, San Francisco)
Klaus-Robert Müller (TU Berlin)
Srikantan Nagarajan (UCSF)
Stefan Haufe (Charité – Universitätsmedizin Berlin)
More from the Same Authors
-
2020 : Joint Hierarchical Bayesian Learning of Full-structure Noise for Brain Source Imaging »
Ali Hashemi -
2021 Poster: SE(3)-equivariant prediction of molecular wavefunctions and electronic densities »
Oliver Unke · Mihail Bogojeski · Michael Gastegger · Mario Geiger · Tess Smidt · Klaus-Robert Müller -
2020 : Panel »
Alan Aspuru-Guzik · Jennifer Listgarten · Klaus-Robert Müller · Nadine Schneider -
2020 : Invited Talk: Klaus Robert-Müller & Kristof Schütt: Machine Learning meets Quantum Chemistry »
Klaus-Robert Müller · Kristof Schütt -
2019 Poster: A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI »
Tao Tu · John Paisley · Stefan Haufe · Paul Sajda -
2018 Workshop: Machine Learning for Molecules and Materials »
José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda