Timezone: »
Poster
Language models enable zero-shot prediction of the effects of mutations on protein function
Joshua Meier · Roshan Rao · Robert Verkuil · Jason Liu · Tom Sercu · Alex Rives
Modeling the effect of sequence variation on function is a fundamental problem for understanding and designing proteins. Since evolution encodes information about function into patterns in protein sequences, unsupervised models of variant effects can be learned from sequence data. The approach to date has been to fit a model to a family of related sequences. The conventional setting is limited, since a new model must be trained for each prediction task. We show that using only zero-shot inference, without any supervision from experimental data or additional training, protein language models capture the functional effects of sequence variation, performing at state-of-the-art.
Author Information
Joshua Meier (Absci)
Researcher at FAIR
Roshan Rao (UC Berkeley)
Robert Verkuil (Facebook)
Jason Liu (Facebook)
Tom Sercu (Facebook AI Research)
Alex Rives (FAIR)
More from the Same Authors
-
2021 : Deep generative models create new and diverse protein structures »
Zeming Lin · Tom Sercu · yann lecun · Alex Rives -
2021 : End-to-end learning of multiple sequence alignmentswith differentiable Smith-Waterman »
Samantha Petti · Nicholas Bhattacharya · Roshan Rao · Justas Dauparas · Neil Thomas · Juannan Zhou · Alexander Rush · Peter Koo · Sergey Ovchinnikov -
2022 : Seq2MSA: A Language Model for Protein Sequence Diversification »
Pascal Sturmfels · Roshan Rao · Robert Verkuil · Zeming Lin · Tom Sercu · Adam Lerer · Alex Rives -
2022 : Seq2MSA: A Language Model for Protein Sequence Diversification »
Pascal Sturmfels · Roshan Rao · Robert Verkuil · Zeming Lin · Tom Sercu · Adam Lerer · Alex Rives -
2022 : Invited Speaker »
Alex Rives -
2021 : Deep generative models create new and diverse protein structures »
Zeming Lin · Tom Sercu · yann lecun · Alex Rives -
2021 : End-to-end learning of multiple sequence alignmentswith differentiable Smith-Waterman »
Samantha Petti · Nicholas Bhattacharya · Roshan Rao · Justas Dauparas · Neil Thomas · Juannan Zhou · Alexander Rush · Peter Koo · Sergey Ovchinnikov -
2021 Workshop: Machine Learning in Structural Biology »
Ellen Zhong · Raphael Townshend · Stephan Eismann · Namrata Anand · Roshan Rao · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Bonnie Berger -
2020 : ESM-1b: Optimizing Evolutionary Scale Modeling »
Joshua Meier · Jason Liu · Zeming Lin · Naman Goyal · Myle Ott · Alexander Rives -
2020 : Afternoon Poster Session »
Roshan Rao -
2020 : Contributed Talk - Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences »
Alexander Rives · Siddharth Goyal · Joshua Meier · Zeming Lin · Demi Guo · Myle Ott · Larry Zitnick · Rob Fergus -
2020 : Contributed talks intro »
Roshan Rao -
2020 : Possu Huang intro »
Roshan Rao -
2020 Workshop: Machine Learning for Structural Biology »
Raphael Townshend · Stephan Eismann · Ron Dror · Ellen Zhong · Namrata Anand · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Roshan Rao · Per Greisen · Rachel Kolodny · Bonnie Berger -
2019 Poster: Evaluating Protein Transfer Learning with TAPE »
Roshan Rao · Nicholas Bhattacharya · Neil Thomas · Yan Duan · Peter Chen · John Canny · Pieter Abbeel · Yun Song -
2019 Spotlight: Evaluating Protein Transfer Learning with TAPE »
Roshan Rao · Nicholas Bhattacharya · Neil Thomas · Yan Duan · Peter Chen · John Canny · Pieter Abbeel · Yun Song -
2017 Poster: Fisher GAN »
Youssef Mroueh · Tom Sercu