Timezone: »
Poster
Stochastic optimization under time drift: iterate averaging, step-decay schedules, and high probability guarantees
Joshua Cutler · Dmitriy Drusvyatskiy · Zaid Harchaoui
We consider the problem of minimizing a convex function that is evolving in time according to unknown and possibly stochastic dynamics. Such problems abound in the machine learning and signal processing literature, under the names of concept drift and stochastic tracking. We provide novel non-asymptotic convergence guarantees for stochastic algorithms with iterate averaging, focusing on bounds valid both in expectation and with high probability. Notably, we show that the tracking efficiency of the proximal stochastic gradient method depends only logarithmically on the initialization quality when equipped with a step-decay schedule.
Author Information
Joshua Cutler (University of Washington)
Dmitriy Drusvyatskiy (University of Washington)
Zaid Harchaoui (University of Washington)
More from the Same Authors
-
2021 : Discrete Schrödinger Bridges with Applications to Two-Sample Homogeneity Testing »
Zaid Harchaoui · Lang Liu · Soumik Pal -
2021 : Discrete Schrödinger Bridges with Applications to Two-Sample Homogeneity Testing »
Zaid Harchaoui · Lang Liu · Soumik Pal -
2021 : Discrete Schrödinger Bridges with Applications to Two-Sample Homogeneity Testing »
Zaid Harchaoui · Lang Liu · Soumik Pal -
2021 Poster: Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals »
Lang Liu · Krishna Pillutla · Sean Welleck · Sewoong Oh · Yejin Choi · Zaid Harchaoui -
2021 Poster: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2021 Oral: MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers »
Krishna Pillutla · Swabha Swayamdipta · Rowan Zellers · John Thickstun · Sean Welleck · Yejin Choi · Zaid Harchaoui -
2016 Poster: Structure-Blind Signal Recovery »
Dmitry Ostrovsky · Zaid Harchaoui · Anatoli Juditsky · Arkadi S Nemirovski -
2015 Poster: A Universal Catalyst for First-Order Optimization »
Hongzhou Lin · Julien Mairal · Zaid Harchaoui -
2015 Poster: Semi-Proximal Mirror-Prox for Nonsmooth Composite Minimization »
Niao He · Zaid Harchaoui -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid -
2014 Spotlight: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid -
2013 Workshop: Greedy Algorithms, Frank-Wolfe and Friends - A modern perspective »
Martin Jaggi · Zaid Harchaoui · Federico Pierucci -
2009 Workshop: Temporal Segmentation: Perspectives from Statistics, Machine Learning, and Signal Processing »
Stephane Canu · Olivier Cappé · Arthur Gretton · Zaid Harchaoui · Alain Rakotomamonjy · Jean-Philippe Vert -
2009 Poster: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2009 Spotlight: A Fast, Consistent Kernel Two-Sample Test »
Arthur Gretton · Kenji Fukumizu · Zaid Harchaoui · Bharath Sriperumbudur -
2008 Poster: Kernel Change-point Analysis »
Zaid Harchaoui · Francis Bach · Eric Moulines -
2007 Poster: Testing for Homogeneity with Kernel Fisher Discriminant Analysis »
Zaid Harchaoui · Francis Bach · Moulines Eric -
2007 Poster: DIFFRAC: a discriminative and flexible framework for clustering »
Francis Bach · Zaid Harchaoui -
2007 Poster: Catching Change-points with Lasso »
Zaid Harchaoui · Céline Lévy-Leduc