Timezone: »
Poster
Causal Effect Inference for Structured Treatments
Jean Kaddour · Yuchen Zhu · Qi Liu · Matt Kusner · Ricardo Silva
We address the estimation of conditional average treatment effects (CATEs) for structured treatments (e.g., graphs, images, texts). Given a weak condition on the effect, we propose the generalized Robinson decomposition, which (i) isolates the causal estimand (reducing regularization bias), (ii) allows one to plug in arbitrary models for learning, and (iii) possesses a quasi-oracle convergence guarantee under mild assumptions. In experiments with small-world and molecular graphs we demonstrate that our approach outperforms prior work in CATE estimation.
Author Information
Jean Kaddour (University College London)
Yuchen Zhu (University College London)
Qi Liu (University of Oxford)
Matt Kusner (University College London)
Ricardo Silva (University College London)
More from the Same Authors
-
2021 : Certified Predictions using MPC-Friendly Publicly Verifiable Covertly Secure Commitments »
Nitin Agrawal · James Bell · Matt Kusner -
2022 : Stop Wasting My Time! Saving Days of ImageNet and BERT Training with Latest Weight Averaging »
Jean Kaddour -
2022 : Pragmatic Fairness: Optimizing Policies with Outcome Disparity Control »
Limor Gultchin · Siyuan Guo · Alan Malek · Silvia Chiappa · Ricardo Silva -
2022 : Evaluating the Impact of Geometric and Statistical Skews on Out-Of-Distribution Generalization Performance »
Aengus Lynch · Jean Kaddour · Ricardo Silva -
2022 : Evaluating the Impact of Geometric and Statistical Skews on Out-Of-Distribution Generalization Performance »
Aengus Lynch · Jean Kaddour · Ricardo Silva -
2022 : Partial identification without distributional assumptions »
Kirtan Padh · Jakob Zeitler · David Watson · Matt Kusner · Ricardo Silva · Niki Kilbertus -
2022 Workshop: Algorithmic Fairness through the Lens of Causality and Privacy »
Awa Dieng · Miriam Rateike · Golnoosh Farnadi · Ferdinando Fioretto · Matt Kusner · Jessica Schrouff -
2022 Poster: Local Latent Space Bayesian Optimization over Structured Inputs »
Natalie Maus · Haydn Jones · Juston Moore · Matt Kusner · John Bradshaw · Jacob Gardner -
2022 Poster: When Do Flat Minima Optimizers Work? »
Jean Kaddour · Linqing Liu · Ricardo Silva · Matt Kusner -
2021 : Ricardo Silva - The Road to Causal Programming »
Ricardo Silva -
2020 Workshop: Machine Learning for Molecules »
José Miguel Hernández-Lobato · Matt Kusner · Brooks Paige · Marwin Segler · Jennifer Wei -
2020 Workshop: Algorithmic Fairness through the Lens of Causality and Interpretability »
Awa Dieng · Jessica Schrouff · Matt Kusner · Golnoosh Farnadi · Fernando Diaz -
2020 Poster: Probabilistic Active Meta-Learning »
Jean Kaddour · Steindor Saemundsson · Marc Deisenroth -
2020 Poster: A Class of Algorithms for General Instrumental Variable Models »
Niki Kilbertus · Matt Kusner · Ricardo Silva -
2020 Poster: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2020 Spotlight: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2019 Poster: Hyperbolic Graph Neural Networks »
Qi Liu · Maximilian Nickel · Douwe Kiela -
2019 Poster: A Model to Search for Synthesizable Molecules »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2017 Poster: When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness »
Chris Russell · Matt Kusner · Joshua Loftus · Ricardo Silva