Timezone: »
This paper presents a problem in power networks that creates an exciting and yet challenging real-world scenario for application of multi-agent reinforcement learning (MARL). The emerging trend of decarbonisation is placing excessive stress on power distribution networks. Active voltage control is seen as a promising solution to relieve power congestion and improve voltage quality without extra hardware investment, taking advantage of the controllable apparatuses in the network, such as roof-top photovoltaics (PVs) and static var compensators (SVCs). These controllable apparatuses appear in a vast number and are distributed in a wide geographic area, making MARL a natural candidate. This paper formulates the active voltage control problem in the framework of Dec-POMDP and establishes an open-source environment. It aims to bridge the gap between the power community and the MARL community and be a drive force towards real-world applications of MARL algorithms. Finally, we analyse the special characteristics of the active voltage control problems that cause challenges (e.g. interpretability) for state-of-the-art MARL approaches, and summarise the potential directions.
Author Information
Jianhong Wang (Imperial College London)
Wangkun Xu (Imperial College London)
Yunjie Gu (University of Bath)
Wenbin Song (Shanghaitech University)
Tim C Green (Imperial College London)
More from the Same Authors
-
2022 Poster: M2N: Mesh Movement Networks for PDE Solvers »
Wenbin Song · Mingrui Zhang · Joseph G Wallwork · Junpeng Gao · Zheng Tian · Fanglei Sun · Matthew Piggott · Junqing Chen · Zuoqiang Shi · Xiang Chen · Jun Wang -
2022 Poster: SHAQ: Incorporating Shapley Value Theory into Multi-Agent Q-Learning »
Jianhong Wang · Yuan Zhang · Yunjie Gu · Tae-Kyun Kim