Timezone: »
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
Author Information
Othmane Marfoq (Inria / Accenture)
Giovanni Neglia (Inria)
Aurélien Bellet (INRIA)
Laetitia Kameni (Accenture)
Richard Vidal (Accenture)
More from the Same Authors
-
2020 : Distributed Differentially Private Averaging with Improved Utility and Robustness to Malicious Parties »
Aurélien Bellet -
2020 : Privacy Amplification by Decentralization »
Aurélien Bellet -
2021 : Efficient passive membership inference attack in federated learning »
CHUAN XU · Giovanni Neglia · Oualid ZARI -
2022 : Refined Convergence and Topology Learning for Decentralized Optimization with Heterogeneous Data »
Batiste Le bars · Aurélien Bellet · Marc Tommasi · Erick Lavoie · Anne-marie Kermarrec -
2022 : A Novel Model-Based Attribute Inference Attack in Federated Learning »
ilias driouich · CHUAN XU · Giovanni Neglia · Frederic Giroire · Eoin Thomas -
2022 : Fairness Certificates for Differentially Private Classification »
Paul Mangold · Michaël Perrot · Marc Tommasi · Aurélien Bellet -
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2022 Poster: Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging »
Edwige Cyffers · Mathieu Even · Aurélien Bellet · Laurent Massoulié -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Throughput-Optimal Topology Design for Cross-Silo Federated Learning »
Othmane Marfoq · CHUAN XU · Giovanni Neglia · Richard Vidal -
2020 Session: Orals & Spotlights Track 10: Social/Privacy »
Yanan Sui · Aurélien Bellet -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2018 : Aurélien Bellet »
Aurélien Bellet -
2017 : Personalized and Private Peer-to-Peer Machine Learning »
Aurélien Bellet · Rachid Guerraoui · Marc Tommasi -
2016 Workshop: Private Multi-Party Machine Learning »
Borja Balle · Aurélien Bellet · David Evans · Adrià Gascón -
2016 Poster: On Graph Reconstruction via Empirical Risk Minimization: Fast Learning Rates and Scalability »
Guillaume Papa · Aurélien Bellet · Stephan Clémençon -
2015 Poster: SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk »
Guillaume Papa · Stéphan Clémençon · Aurélien Bellet -
2015 Poster: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon -
2015 Spotlight: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon