`

Timezone: »

 
Spotlight
Optimal Sketching for Trace Estimation
Shuli Jiang · Hai Pham · David Woodruff · Richard Zhang

@ None
Matrix trace estimation is ubiquitous in machine learning applications and has traditionally relied on Hutchinson's method, which requires $O(\log(1/\delta)/\epsilon^2)$ matrix-vector product queries to achieve a $(1 \pm \epsilon)$-multiplicative approximation to $\text{trace}(A)$ with failure probability $\delta$ on positive-semidefinite input matrices $A$. Recently, the Hutch++ algorithm was proposed, which reduces the number of matrix-vector queries from $O(1/\epsilon^2)$ to the optimal $O(1/\epsilon)$, and the algorithm succeeds with constant probability. However, in the high probability setting, the non-adaptive Hutch++ algorithm suffers an extra $O(\sqrt{\log(1/\delta)})$ multiplicative factor in its query complexity. Non-adaptive methods are important, as they correspond to sketching algorithms, which are mergeable, highly parallelizable, and provide low-memory streaming algorithms as well as low-communication distributed protocols. In this work, we close the gap between non-adaptive and adaptive algorithms, showing that even non-adaptive algorithms can achieve $O(\sqrt{\log(1/\delta)}/\epsilon + \log(1/\delta))$ matrix-vector products. In addition, we prove matching lower bounds demonstrating that, up to a $\log \log(1/\delta)$ factor, no further improvement in the dependence on $\delta$ or $\epsilon$ is possible by any non-adaptive algorithm. Finally, our experiments demonstrate the superior performance of our sketch over the adaptive Hutch++ algorithm, which is less parallelizable, as well as over the non-adaptive Hutchinson's method.

Author Information

Shuli Jiang (Carnegie Mellon University)
Hai Pham (Carnegie Mellon University)
David Woodruff (Carnegie Mellon University)
Richard Zhang (Google Brain)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors