Timezone: »
How well do deep neural networks fare as models of mouse visual cortex? A majority of research to date suggests results far more mixed than those produced in the modeling of primate visual cortex. Here, we perform a large-scale benchmarking of dozens of deep neural network models in mouse visual cortex with both representational similarity analysis and neural regression. Using the Allen Brain Observatory's 2-photon calcium-imaging dataset of activity in over 6,000 reliable rodent visual cortical neurons recorded in response to natural scenes, we replicate previous findings and resolve previous discrepancies, ultimately demonstrating that modern neural networks can in fact be used to explain activity in the mouse visual cortex to a more reasonable degree than previously suggested. Using our benchmark as an atlas, we offer preliminary answers to overarching questions about levels of analysis (e.g. do models that better predict the representations of individual neurons also predict representational similarity across neural populations?); questions about the properties of models that best predict the visual system overall (e.g. is convolution or category-supervision necessary to better predict neural activity?); and questions about the mapping between biological and artificial representations (e.g. does the information processing hierarchy in deep nets match the anatomical hierarchy of mouse visual cortex?). Along the way, we catalogue a number of models (including vision transformers, MLP-Mixers, normalization free networks, Taskonomy encoders and self-supervised models) outside the traditional circuit of convolutional object recognition. Taken together, our results provide a reference point for future ventures in the deep neural network modeling of mouse visual cortex, hinting at novel combinations of mapping method, architecture, and task to more fully characterize the computational motifs of visual representation in a species so central to neuroscience, but with a perceptual physiology and ecology markedly different from the ones we study in primates.
Author Information
Colin Conwell (Harvard University)
David Mayo (Google)
Andrei Barbu (MIT)
Michael Buice (Allen Institute)
George Alvarez (Harvard University)
Boris Katz (MIT)
More from the Same Authors
-
2021 : Towards Incorporating Rich Social Interactions Into MDPs »
Ravi Tejwani · Yen-Ling Kuo · Tianmin Shu · Bennett Stankovits · Dan Gutfreund · Josh Tenenbaum · Boris Katz · Andrei Barbu -
2022 : Neural Network Online Training with Sensitivity to Multiscale Temporal Structure »
Matt Jones · Tyler Scott · Gamaleldin Elsayed · Mengye Ren · Katherine Hermann · David Mayo · Michael Mozer -
2022 : Using Sum-Product Networks to estimate neural population stutcture in the brain »
Koosha Khalvati · Samantha Johnson · Stefan Mihalas · Michael Buice -
2022 : Towards Disentangling the Roles of Vision & Language in Aesthetic Experience with Multimodal DNNs »
Colin Conwell · Christopher Hamblin -
2022 : Workshop version: How hard are computer vision datasets? Calibrating dataset difficulty to viewing time »
David Mayo · Jesse Cummings · Xinyu Lin · Dan Gutfreund · Boris Katz · Andrei Barbu -
2022 : VI2N: A Network for Planning Under Uncertainty based on Value of Information »
Samantha Johnson · Michael Buice · Koosha Khalvati -
2022 : Image recognition time for humans predicts adversarial vulnerability for models »
David Mayo · Jesse Cummings · Xinyu Lin · Boris Katz · Andrei Barbu -
2023 Poster: Cognitive Steering in Deep Neural Networks via Long-Range Modulatory Feedback Connections »
Talia Konkle · George Alvarez -
2023 Poster: How hard are computer vision datasets? Calibrating dataset difficulty to viewing time »
David Mayo · Jesse Cummings · Xinyu Lin · Dan Gutfreund · Boris Katz · Andrei Barbu -
2022 : The Perceptual Primacy of Feeling: Affectless machine vision models explain the majority of variance in visually evoked affect and aesthetics »
Colin Conwell -
2022 Poster: Learning dynamics of deep linear networks with multiple pathways »
Jianghong Shi · Eric Shea-Brown · Michael Buice -
2021 : What can 5.17 billion regression fits tell us about artificial models of the human visual system? »
Colin Conwell · Jacob Prince · George Alvarez · Talia Konkle -
2021 : Unsupervised Representation Learning Facilitates Human-like Spatial Reasoning »
Kaushik Lakshminarasimhan · Colin Conwell -
2021 : On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation »
Binxu Wang · David Mayo · Arturo Deza · Andrei Barbu · Colin Conwell -
2021 Poster: Tensor decompositions of higher-order correlations by nonlinear Hebbian plasticity »
Gabriel Ocker · Michael Buice -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 : Making the next generation of machine learning datasets: ObjectNet a new object recognition benchmark »
Andrei Barbu -
2019 Poster: ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models »
Andrei Barbu · David Mayo · Julian Alverio · William Luo · Christopher Wang · Dan Gutfreund · Josh Tenenbaum · Boris Katz -
2019 Poster: Comparison Against Task Driven Artificial Neural Networks Reveals Functional Organization of Mouse Visual Cortex »
Jianghong Shi · Eric Shea-Brown · Michael Buice -
2009 Poster: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum -
2009 Oral: Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model »
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum