Timezone: »
We consider the task of learning latent community structure from multiple correlated networks. First, we study the problem of learning the latent vertex correspondence between two edge-correlated stochastic block models, focusing on the regime where the average degree is logarithmic in the number of vertices. We derive the precise information-theoretic threshold for exact recovery: above the threshold there exists an estimator that outputs the true correspondence with probability close to 1, while below it no estimator can recover the true correspondence with probability bounded away from 0. As an application of our results, we show how one can exactly recover the latent communities using \emph{multiple} correlated graphs in parameter regimes where it is information-theoretically impossible to do so using just a single graph.
Author Information
Miklos Racz (Princeton University)
Anirudh Sridhar (Princeton University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Correlated Stochastic Block Models: Exact Graph Matching with Applications to Recovering Communities »
Dates n/a. Room
More from the Same Authors
-
2017 Poster: Clustering Billions of Reads for DNA Data Storage »
Cyrus Rashtchian · Konstantin Makarychev · Miklos Racz · Siena Ang · Djordje Jevdjic · Sergey Yekhanin · Luis Ceze · Karin Strauss -
2017 Spotlight: Clustering Billions of Reads for DNA Data Storage »
Cyrus Rashtchian · Konstantin Makarychev · Miklos Racz · Siena Ang · Djordje Jevdjic · Sergey Yekhanin · Luis Ceze · Karin Strauss