Timezone: »
Most existing geometry processing algorithms use meshes as the default shape representation. Manipulating meshes, however, requires one to maintain high quality in the surface discretization. For example, changing the topology of a mesh usually requires additional procedures such as remeshing. This paper instead proposes the use of neural fields for geometry processing. Neural fields can compactly store complicated shapes without spatial discretization. Moreover, neural fields are infinitely differentiable, which allows them to be optimized for objectives that involve higher-order derivatives. This raises the question: can geometry processing be done entirely using neural fields? We introduce loss functions and architectures to show that some of the most challenging geometry processing tasks, such as deformation and filtering, can be done with neural fields. Experimental results show that our methods are on par with the well-established mesh-based methods without committing to a particular surface discretization. Code is available at https://github.com/stevenygd/NFGP.
Author Information
Guandao Yang (Cornell University)
Serge Belongie (Cornell University)
Bharath Hariharan (Cornell University)
Vladlen Koltun (Apple)
More from the Same Authors
-
2021 Spotlight: Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · John Turner · Noah Maestre · Mustafa Mukadam · Devendra Singh Chaplot · Oleksandr Maksymets · Aaron Gokaslan · Vladimír Vondruš · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 : Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge »
Jiyang Qi · Yan Gao · Yao Hu · Xinggang Wang · Xiaoyu Liu · Xiang Bai · Serge Belongie · Alan Yuille · Philip Torr · Song Bai -
2023 Poster: NeRF Revisited: Fixing Quadrature Instability in Volume Rendering »
Mikaela Angelina Uy · Guandao Yang · Kiyohiro Nakayama · Leonidas Guibas · Ke Li -
2022 Poster: Scale-invariant Learning by Physics Inversion »
Philipp Holl · Vladlen Koltun · Nils Thuerey -
2022 Poster: Domain Generalization without Excess Empirical Risk »
Ozan Sener · Vladlen Koltun -
2022 Poster: Guaranteed Conservation of Momentum for Learning Particle-based Fluid Dynamics »
Lukas Prantl · Benjamin Ummenhofer · Vladlen Koltun · Nils Thuerey -
2022 Poster: Non-deep Networks »
Ankit Goyal · Alexey Bochkovskiy · Jia Deng · Vladlen Koltun -
2022 Poster: Polynomial Neural Fields for Subband Decomposition and Manipulation »
Guandao Yang · Sagie Benaim · Varun Jampani · Kyle Genova · Jonathan Barron · Thomas Funkhouser · Bharath Hariharan · Serge Belongie -
2021 : Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · Noah Maestre · Mustafa Mukadam · Oleksandr Maksymets · Aaron Gokaslan · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 : Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · Noah Maestre · Mustafa Mukadam · Oleksandr Maksymets · Aaron Gokaslan · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 Poster: Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · John Turner · Noah Maestre · Mustafa Mukadam · Devendra Singh Chaplot · Oleksandr Maksymets · Aaron Gokaslan · Vladimír Vondruš · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 Poster: Differentiable Simulation of Soft Multi-body Systems »
Yi-Ling Qiao · Junbang Liang · Vladlen Koltun · Ming Lin -
2020 Poster: Wasserstein Distances for Stereo Disparity Estimation »
Divyansh Garg · Yan Wang · Bharath Hariharan · Mark Campbell · Kilian Weinberger · Wei-Lun Chao -
2020 Spotlight: Wasserstein Distances for Stereo Disparity Estimation »
Divyansh Garg · Yan Wang · Bharath Hariharan · Mark Campbell · Kilian Weinberger · Wei-Lun Chao -
2019 Poster: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2019 Spotlight: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2018 Poster: Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search »
Zhuwen Li · Qifeng Chen · Vladlen Koltun -
2018 Poster: Multi-Task Learning as Multi-Objective Optimization »
Ozan Sener · Vladlen Koltun -
2016 Poster: Residual Networks Behave Like Ensembles of Relatively Shallow Networks »
Andreas Veit · Michael J Wilber · Serge Belongie -
2012 Workshop: Human Computation for Science and Computational Sustainability »
Theodoros Damoulas · Thomas Dietterich · Edith Law · Serge Belongie -
2012 Poster: LUCID: Locally Uniform Comparison Image Descriptor »
Andrew M Ziegler · Eric Christiansen · David Kriegman · Serge Belongie -
2010 Oral: The Multidimensional Wisdom of Crowds »
Peter Welinder · Steve Branson · Serge Belongie · Pietro Perona -
2010 Poster: The Multidimensional Wisdom of Crowds »
Peter Welinder · Steve Branson · Serge Belongie · Pietro Perona -
2006 Poster: Learning to Traverse Image Manifolds »
Piotr Dollar · Vincent Rabaud · Serge Belongie