Timezone: »
Implicit planning has emerged as an elegant technique for combining learned models of the world with end-to-end model-free reinforcement learning. We study the class of implicit planners inspired by value iteration, an algorithm that is guaranteed to yield perfect policies in fully-specified tabular environments. We find that prior approaches either assume that the environment is provided in such a tabular form---which is highly restrictive---or infer "local neighbourhoods" of states to run value iteration over---for which we discover an algorithmic bottleneck effect. This effect is caused by explicitly running the planning algorithm based on scalar predictions in every state, which can be harmful to data efficiency if such scalars are improperly predicted. We propose eXecuted Latent Value Iteration Networks (XLVINs), which alleviate the above limitations. Our method performs all planning computations in a high-dimensional latent space, breaking the algorithmic bottleneck. It maintains alignment with value iteration by carefully leveraging neural graph-algorithmic reasoning and contrastive self-supervised learning. Across seven low-data settings---including classical control, navigation and Atari---XLVINs provide significant improvements to data efficiency against value iteration-based implicit planners, as well as relevant model-free baselines. Lastly, we empirically verify that XLVINs can closely align with value iteration.
Author Information
Andreea-Ioana Deac (Mila)
Petar Veličković (DeepMind / University of Cambridge)
Ognjen Milinkovic (Faculty of Mathematics, University of Belgrade)
Pierre-Luc Bacon (McGill University)
Jian Tang (Mila)
Mladen Nikolic (Faculty of Mathematics, University of Belgrade)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Neural Algorithmic Reasoners are Implicit Planners »
Dates n/a. Room
More from the Same Authors
-
2020 : Session B, Poster 3: Xlvin: Executed Latent Value Iteration Nets »
Andreea-Ioana Deac -
2021 : Long-Term Credit Assignment via Model-based Temporal Shortcuts »
Michel Ma · Pierluca D'Oro · Yoshua Bengio · Pierre-Luc Bacon -
2021 : Multi-task Learning with Domain Knowledge for Molecular Property Prediction »
Shengchao Liu · Meng Qu · Zuobai Zhang · Jian Tang -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2021 : Learning Graph Search Heuristics »
Michal Pándy · Rex Ying · Gabriele Corso · Petar Veličković · Jure Leskovec · Pietro Liò -
2021 : AI X Molecule »
Jian Tang -
2021 : AI X Mathematics »
Petar Veličković -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: How to transfer algorithmic reasoning knowledge to learn new algorithms? »
Louis-Pascal Xhonneux · Andreea-Ioana Deac · Petar Veličković · Jian Tang -
2021 Poster: Neural Distance Embeddings for Biological Sequences »
Gabriele Corso · Zhitao Ying · Michal Pándy · Petar Veličković · Jure Leskovec · Pietro Liò -
2021 Poster: Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction »
Zhaocheng Zhu · Zuobai Zhang · Louis-Pascal Xhonneux · Jian Tang -
2021 Poster: Predicting Molecular Conformation via Dynamic Graph Score Matching »
Shitong Luo · Chence Shi · Minkai Xu · Jian Tang -
2021 Poster: Joint Modeling of Visual Objects and Relations for Scene Graph Generation »
Minghao Xu · Meng Qu · Bingbing Ni · Jian Tang -
2020 : Poster Session B »
Ravichandra Addanki · Andreea-Ioana Deac · Yujia Xie · Francesco Landolfi · Antoine Prouvost · Claudius Gros · Renzo Massobrio · Abhishek Cauligi · Simon Alford · Hanjun Dai · Alberto Franzin · Nitish Kumar Panigrahy · Brandon Kates · Iddo Drori · Taoan Huang · Zhou Zhou · Marin Vlastelica · Anselm Paulus · Aaron Zweig · Minsu Cho · Haiyan Yin · Michal Lisicki · Nan Jiang · Haoran Sun -
2020 : Invited Talk (Petar Veličković) »
Petar Veličković -
2020 Poster: Graph Policy Network for Transferable Active Learning on Graphs »
Shengding Hu · Zheng Xiong · Meng Qu · Xingdi Yuan · Marc-Alexandre Côté · Zhiyuan Liu · Jian Tang -
2020 Poster: Principal Neighbourhood Aggregation for Graph Nets »
Gabriele Corso · Luca Cavalleri · Dominique Beaini · Pietro Liò · Petar Veličković -
2020 Poster: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Spotlight: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Poster: Towards Interpretable Natural Language Understanding with Explanations as Latent Variables »
Wangchunshu Zhou · Jinyi Hu · Hanlin Zhang · Xiaodan Liang · Maosong Sun · Chenyan Xiong · Jian Tang -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković -
2019 Poster: vGraph: A Generative Model for Joint Community Detection and Node Representation Learning »
Fan-Yun Sun · Meng Qu · Jordan Hoffmann · Chin-Wei Huang · Jian Tang -
2019 Poster: Probabilistic Logic Neural Networks for Reasoning »
Meng Qu · Jian Tang -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar