Timezone: »
Poster
Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet
We consider the problem of online linear regression in the stochastic setting. We derive high probability regret bounds for online $\textit{ridge}$ regression and the $\textit{forward}$ algorithm. This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions. Our study advocates for the use of the forward algorithm in lieu of ridge due to its enhanced bounds and robustness to the regularization parameter. Moreover, we explain how to integrate it in algorithms involving linear function approximation to remove a boundedness assumption without deteriorating theoretical bounds. We showcase this modification in linear bandit settings where it yields improved regret bounds. Last, we provide numerical experiments to illustrate our results and endorse our intuitions.
Author Information
Reda Ouhamma (Université de Lille)
Odalric-Ambrym Maillard (INRIA Lille Nord Europe)
Vianney Perchet (ENSAE & Criteo AI Lab)
More from the Same Authors
-
2021 Spotlight: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Spotlight: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2022 Poster: IMED-RL: Regret optimal learning of ergodic Markov decision processes »
Fabien Pesquerel · Odalric-Ambrym Maillard -
2022 Poster: Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits »
Lilian Besson · Emilie Kaufmann · Odalric-Ambrym Maillard · Julien Seznec -
2021 Poster: Local Differential Privacy for Regret Minimization in Reinforcement Learning »
Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta -
2021 Poster: Stochastic bandits with groups of similar arms. »
Fabien Pesquerel · Hassan SABER · Odalric-Ambrym Maillard -
2021 Poster: ROI Maximization in Stochastic Online Decision-Making »
Nicolò Cesa-Bianchi · Tom Cesari · Yishay Mansour · Vianney Perchet -
2021 Poster: Making the most of your day: online learning for optimal allocation of time »
Etienne Boursier · Tristan Garrec · Vianney Perchet · Marco Scarsini -
2021 Poster: Indexed Minimum Empirical Divergence for Unimodal Bandits »
Hassan SABER · Pierre Ménard · Odalric-Ambrym Maillard -
2021 Poster: From Optimality to Robustness: Adaptive Re-Sampling Strategies in Stochastic Bandits »
Dorian Baudry · Patrick Saux · Odalric-Ambrym Maillard -
2021 Poster: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Poster: Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of Greedy Algorithm »
Nathan Noiry · Vianney Perchet · Flore Sentenac -
2021 Poster: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2017 Poster: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet -
2017 Spotlight: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet