Timezone: »
Poster
A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum
Prashant Khanduri · Siliang Zeng · Mingyi Hong · Hoi-To Wai · Zhaoran Wang · Zhuoran Yang
This paper proposes a new algorithm -- the \underline{S}ingle-timescale Do\underline{u}ble-momentum \underline{St}ochastic \underline{A}pprox\underline{i}matio\underline{n} (SUSTAIN) -- for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on \emph{two-timescale} or \emph{double loop} techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that {SUSTAIN}~requires $O(\epsilon^{-3/2})$ iterations (each using $O(1)$ samples) to find an $\epsilon$-stationary solution. The $\epsilon$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $\epsilon$. The total number of stochastic gradient samples required for the upper and lower level objective functions matches the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex.
Author Information
Prashant Khanduri (University of Minnesota)
Siliang Zeng (University of Minnesota, Twin Cities)
Mingyi Hong (University of Minnesota)
Hoi-To Wai (The Chinese University of Hong Kong)
Zhaoran Wang (Princeton University)
Zhuoran Yang (Princeton)
More from the Same Authors
-
2021 : A Unified Framework to Understand Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective »
xinwei zhang · Mingyi Hong · Nicola Elia -
2021 : GPU-Podracer: Scalable and Elastic Library for Cloud-Native Deep Reinforcement Learning »
Xiao-Yang Liu · Zhuoran Yang · Zhaoran Wang · Anwar Walid · Jian Guo · Michael Jordan -
2021 : Exponential Family Model-Based Reinforcement Learning via Score Matching »
Gene Li · Junbo Li · Nathan Srebro · Zhaoran Wang · Zhuoran Yang -
2022 : A Unified Framework to Understand Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective »
xinwei zhang · Nicola Elia · Mingyi Hong -
2022 : Building Large Machine Learning Models from Small Distributed Models: A Layer Matching Approach »
xinwei zhang · Bingqing Song · Mehrdad Honarkhah · Jie Ding · Mingyi Hong -
2022 : With a Little Help from My Friend: Server-Aided Federated Learning with Partial Client Participation »
Haibo Yang · Peiwen Qiu · Prashant Khanduri · Jia Liu -
2022 : On the Robustness of deep learning-based MRI Reconstruction to image transformations »
jinghan jia · Mingyi Hong · Yimeng Zhang · Mehmet Akcakaya · Sijia Liu -
2022 Poster: A Stochastic Linearized Augmented Lagrangian Method for Decentralized Bilevel Optimization »
Songtao Lu · Siliang Zeng · Xiaodong Cui · Mark Squillante · Lior Horesh · Brian Kingsbury · Jia Liu · Mingyi Hong -
2022 Poster: Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence »
Boyi Liu · Jiayang Li · Zhuoran Yang · Hoi-To Wai · Mingyi Hong · Yu Nie · Zhaoran Wang -
2022 Poster: Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time Guarantees »
Siliang Zeng · Chenliang Li · Alfredo Garcia · Mingyi Hong -
2022 Poster: Advancing Model Pruning via Bi-level Optimization »
Yihua Zhang · Yuguang Yao · Parikshit Ram · Pu Zhao · Tianlong Chen · Mingyi Hong · Yanzhi Wang · Sijia Liu -
2022 Poster: Distributed Optimization for Overparameterized Problems: Achieving Optimal Dimension Independent Communication Complexity »
Bingqing Song · Ioannis Tsaknakis · Chung-Yiu Yau · Hoi-To Wai · Mingyi Hong -
2021 : Contributed Talk 2: A Unified Framework to Understand Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective »
xinwei zhang · Mingyi Hong · Nicola Elia -
2021 Poster: Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL »
Minshuo Chen · Yan Li · Ethan Wang · Zhuoran Yang · Zhaoran Wang · Tuo Zhao -
2021 Poster: STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal Sample and Communication Complexities for Federated Learning »
Prashant Khanduri · PRANAY SHARMA · Haibo Yang · Mingyi Hong · Jia Liu · Ketan Rajawat · Pramod Varshney -
2021 Poster: Exponential Bellman Equation and Improved Regret Bounds for Risk-Sensitive Reinforcement Learning »
Yingjie Fei · Zhuoran Yang · Yudong Chen · Zhaoran Wang -
2021 Poster: BooVI: Provably Efficient Bootstrapped Value Iteration »
Boyi Liu · Qi Cai · Zhuoran Yang · Zhaoran Wang -
2021 Poster: Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic »
Yufeng Zhang · Siyu Chen · Zhuoran Yang · Michael Jordan · Zhaoran Wang -
2021 Poster: Offline Constrained Multi-Objective Reinforcement Learning via Pessimistic Dual Value Iteration »
Runzhe Wu · Yufeng Zhang · Zhuoran Yang · Zhaoran Wang -
2021 Poster: When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work »
Jiawei Zhang · Yushun Zhang · Mingyi Hong · Ruoyu Sun · Zhi-Quan Luo -
2021 Poster: Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize »
Alain Durmus · Eric Moulines · Alexey Naumov · Sergey Samsonov · Kevin Scaman · Hoi-To Wai -
2021 Poster: Dynamic Bottleneck for Robust Self-Supervised Exploration »
Chenjia Bai · Lingxiao Wang · Lei Han · Animesh Garg · Jianye Hao · Peng Liu · Zhaoran Wang -
2021 Poster: Provably Efficient Causal Reinforcement Learning with Confounded Observational Data »
Lingxiao Wang · Zhuoran Yang · Zhaoran Wang -
2020 Poster: Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework »
Wanxin Jin · Zhaoran Wang · Zhuoran Yang · Shaoshuai Mou -
2020 Poster: Finding Second-Order Stationary Points Efficiently in Smooth Nonconvex Linearly Constrained Optimization Problems »
Songtao Lu · Meisam Razaviyayn · Bo Yang · Kejun Huang · Mingyi Hong -
2020 Poster: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Poster: Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms »
Xiangyi Chen · Tiancong Chen · Haoran Sun · Steven Wu · Mingyi Hong -
2020 Spotlight: Understanding Gradient Clipping in Private SGD: A Geometric Perspective »
Xiangyi Chen · Steven Wu · Mingyi Hong -
2020 Spotlight: Finding Second-Order Stationary Points Efficiently in Smooth Nonconvex Linearly Constrained Optimization Problems »
Songtao Lu · Meisam Razaviyayn · Bo Yang · Kejun Huang · Mingyi Hong -
2020 Poster: Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory »
Yufeng Zhang · Qi Cai · Zhuoran Yang · Yongxin Chen · Zhaoran Wang -
2020 Oral: Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory »
Yufeng Zhang · Qi Cai · Zhuoran Yang · Yongxin Chen · Zhaoran Wang -
2020 Poster: Provably Efficient Neural GTD for Off-Policy Learning »
Hoi-To Wai · Zhuoran Yang · Zhaoran Wang · Mingyi Hong -
2020 Poster: Provably Efficient Neural Estimation of Structural Equation Models: An Adversarial Approach »
Luofeng Liao · You-Lin Chen · Zhuoran Yang · Bo Dai · Mladen Kolar · Zhaoran Wang -
2020 Poster: Dynamic Regret of Policy Optimization in Non-Stationary Environments »
Yingjie Fei · Zhuoran Yang · Zhaoran Wang · Qiaomin Xie -
2020 Poster: On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces »
Zhuoran Yang · Chi Jin · Zhaoran Wang · Mengdi Wang · Michael Jordan -
2020 Poster: Upper Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss »
Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jieping Ye · Zhaoran Wang -
2020 Poster: Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret »
Yingjie Fei · Zhuoran Yang · Yudong Chen · Zhaoran Wang · Qiaomin Xie -
2020 Spotlight: Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret »
Yingjie Fei · Zhuoran Yang · Yudong Chen · Zhaoran Wang · Qiaomin Xie -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 Poster: Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost »
Zhuoran Yang · Yongxin Chen · Mingyi Hong · Zhaoran Wang -
2019 Poster: Variance Reduced Policy Evaluation with Smooth Function Approximation »
Hoi-To Wai · Mingyi Hong · Zhuoran Yang · Zhaoran Wang · Kexin Tang -
2019 Poster: ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization »
Xiangyi Chen · Sijia Liu · Kaidi Xu · Xingguo Li · Xue Lin · Mingyi Hong · David Cox -
2018 Poster: Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames »
Geneviève Robin · Hoi-To Wai · Julie Josse · Olga Klopp · Eric Moulines -
2018 Spotlight: Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames »
Geneviève Robin · Hoi-To Wai · Julie Josse · Olga Klopp · Eric Moulines -
2018 Poster: Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization »
Hoi-To Wai · Zhuoran Yang · Zhaoran Wang · Mingyi Hong -
2016 Poster: NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization »
Davood Hajinezhad · Mingyi Hong · Tuo Zhao · Zhaoran Wang -
2016 Poster: Agnostic Estimation for Misspecified Phase Retrieval Models »
Matey Neykov · Zhaoran Wang · Han Liu -
2016 Poster: Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes »
Chris Junchi Li · Zhaoran Wang · Han Liu -
2016 Poster: Blind Attacks on Machine Learners »
Alex Beatson · Zhaoran Wang · Han Liu -
2016 Poster: More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning »
Xinyang Yi · Zhaoran Wang · Zhuoran Yang · Constantine Caramanis · Han Liu -
2015 Poster: Optimal Linear Estimation under Unknown Nonlinear Transform »
Xinyang Yi · Zhaoran Wang · Constantine Caramanis · Han Liu -
2015 Poster: Non-convex Statistical Optimization for Sparse Tensor Graphical Model »
Wei Sun · Zhaoran Wang · Han Liu · Guang Cheng -
2015 Poster: High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality »
Zhaoran Wang · Quanquan Gu · Yang Ning · Han Liu -
2015 Poster: A Nonconvex Optimization Framework for Low Rank Matrix Estimation »
Tuo Zhao · Zhaoran Wang · Han Liu -
2014 Poster: Sparse PCA with Oracle Property »
Quanquan Gu · Zhaoran Wang · Han Liu -
2014 Poster: Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time »
Zhaoran Wang · Huanran Lu · Han Liu