Timezone: »
Poster
Fast Routing under Uncertainty: Adaptive Learning in Congestion Games via Exponential Weights
Dong Quan Vu · Kimon Antonakopoulos · Panayotis Mertikopoulos
We examine an adaptive learning framework for nonatomic congestion games where the players' cost functions may be subject to exogenous fluctuations (e.g., due to disturbances in the network, variations in the traffic going through a link). In this setting, the popular multiplicative/ exponential weights algorithm enjoys an $\mathcal{O}(1/\sqrt{T})$ equilibrium convergence rate; however, this rate is suboptimal in static environments---i.e., when the network is not subject to randomness. In this static regime, accelerated algorithms achieve an $\mathcal{O}(1/T^{2})$ convergence speed, but they fail to converge altogether in stochastic problems. To fill this gap, we propose a novel, adaptive exponential weights method---dubbed AdaWeight---that seamlessly interpolates between the $\mathcal{O}(1/T^{2})$ and $\mathcal{O}(1/\sqrt{T})$ rates in the static and stochastic regimes respectively. Importantly, this "best-of-both-worlds" guarantee does not require any prior knowledge of the problem's parameters or tuning by the optimizer; in addition, the method's convergence speed depends subquadratically on the size of the network (number of vertices and edges), so it scales gracefully to large, real-life urban networks.
Author Information
Dong Quan Vu (Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG)
I am currently a postdoctoral researcher working at LIG – Laboratoire d’informatique de Grenoble (France); POLARIS Team. My current research interests lie at the intersection of Online Learning, Optimization and Game Theory with the scope of applications aiming towards Operational Research, Resource Management and Multi-agent Systems.
Kimon Antonakopoulos (INRIA)
Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research) and Criteo AI Lab)
More from the Same Authors
-
2023 Poster: Riemannian stochastic optimization methods avoid strict saddle points »
Ya-Ping Hsieh · Mohammad Reza Karimi Jaghargh · Andreas Krause · Panayotis Mertikopoulos -
2023 Poster: Strategic Stability under Regularized Learning in Games »
Victor Boone · Panayotis Mertikopoulos -
2023 Poster: Payoff-based Learning with Matrix Multiplicative Weights in Quantum Games »
Kyriakos Lotidis · Panayotis Mertikopoulos · Nicholas Bambos · Jose Blanchet -
2023 Poster: Exploiting hidden structures in non-convex games for convergence to Nash equilibrium »
Iosif Sakos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Panayotis Mertikopoulos · Georgios Piliouras -
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: On the convergence of policy gradient methods to Nash equilibria in general stochastic games »
Angeliki Giannou · Kyriakos Lotidis · Panayotis Mertikopoulos · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2021 Poster: Sifting through the noise: Universal first-order methods for stochastic variational inequalities »
Kimon Antonakopoulos · Thomas Pethick · Ali Kavis · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Adaptive First-Order Methods Revisited: Convex Minimization without Lipschitz Requirements »
Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: On the Rate of Convergence of Regularized Learning in Games: From Bandits and Uncertainty to Optimism and Beyond »
Angeliki Giannou · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Panayotis Mertikopoulos -
2020 Poster: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Spotlight: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Poster: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Poster: Online Non-Convex Optimization with Imperfect Feedback »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud Rahier -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2020 Spotlight: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: On the convergence of single-call stochastic extra-gradient methods »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: An adaptive Mirror-Prox method for variational inequalities with singular operators »
Kimon Antonakopoulos · Veronica Belmega · Panayotis Mertikopoulos -
2018 : Poster spotlight »
Tianbao Yang · Pavel Dvurechenskii · Panayotis Mertikopoulos · Hugo Berard -
2018 Poster: Bandit Learning in Concave N-Person Games »
Mario Bravo · David Leslie · Panayotis Mertikopoulos -
2018 Poster: Learning in Games with Lossy Feedback »
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye -
2017 Poster: Countering Feedback Delays in Multi-Agent Learning »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter W Glynn · Claire Tomlin -
2017 Poster: Learning with Bandit Feedback in Potential Games »
Amélie Héliou · Johanne Cohen · Panayotis Mertikopoulos -
2017 Poster: Stochastic Mirror Descent in Variationally Coherent Optimization Problems »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Stephen Boyd · Peter W Glynn