Timezone: »
We introduce DMTet, a deep 3D conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels. It marries the merits of implicit and explicit 3D representations by leveraging a novel hybrid 3D representation. Compared to the current implicit approaches, which are trained to regress the signed distance values, DMTet directly optimizes for the reconstructed surface, which enables us to synthesize finer geometric details with fewer artifacts. Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology. The core of DMTet includes a deformable tetrahedral grid that encodes a discretized signed distance function and a differentiable marching tetrahedra layer that converts the implicit signed distance representation to the explicit surface mesh representation. This combination allows joint optimization of the surface geometry and topology as well as generation of the hierarchy of subdivisions using reconstruction and adversarial losses defined explicitly on the surface mesh. Our approach significantly outperforms existing work on conditional shape synthesis from coarse voxel inputs, trained on a dataset of complex 3D animal shapes. Project page: https://nv-tlabs.github.io/DMTet/.
Author Information
Tianchang Shen (Department of Computer Science, University of Toronto)
Jun Gao (University of Toronto; Nvidia)
Kangxue Yin (NVIDIA)
Ming-Yu Liu (NVIDIA)
Sanja Fidler (University of Toronto)
More from the Same Authors
-
2022 Spotlight: GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images »
Jun Gao · Tianchang Shen · Zian Wang · Wenzheng Chen · Kangxue Yin · Daiqing Li · Or Litany · Zan Gojcic · Sanja Fidler -
2022 Poster: Implicit Warping for Animation with Image Sets »
Arun Mallya · Ting-Chun Wang · Ming-Yu Liu -
2022 Poster: Implicit Neural Representations with Levels-of-Experts »
Zekun Hao · Arun Mallya · Serge Belongie · Ming-Yu Liu -
2022 Poster: Generating Long Videos of Dynamic Scenes »
Tim Brooks · Janne Hellsten · Miika Aittala · Ting-Chun Wang · Timo Aila · Jaakko Lehtinen · Ming-Yu Liu · Alexei Efros · Tero Karras -
2022 Poster: GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images »
Jun Gao · Tianchang Shen · Zian Wang · Wenzheng Chen · Kangxue Yin · Daiqing Li · Or Litany · Zan Gojcic · Sanja Fidler -
2021 Poster: Scalable Neural Data Server: A Data Recommender for Transfer Learning »
Tianshi Cao · Sasha (Alexandre) Doubov · David Acuna · Sanja Fidler -
2021 Poster: DIB-R++: Learning to Predict Lighting and Material with a Hybrid Differentiable Renderer »
Wenzheng Chen · Joey Litalien · Jun Gao · Zian Wang · Clement Fuji Tsang · Sameh Khamis · Or Litany · Sanja Fidler -
2021 Poster: EditGAN: High-Precision Semantic Image Editing »
Huan Ling · Karsten Kreis · Daiqing Li · Seung Wook Kim · Antonio Torralba · Sanja Fidler -
2021 Poster: ATISS: Autoregressive Transformers for Indoor Scene Synthesis »
Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler -
2021 Poster: Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence »
Tianshi Cao · Alex Bie · Arash Vahdat · Sanja Fidler · Karsten Kreis -
2021 Poster: Towards Optimal Strategies for Training Self-Driving Perception Models in Simulation »
David Acuna · Jonah Philion · Sanja Fidler -
2020 : Sanja Fidler »
Sanja Fidler -
2020 Poster: Variational Amodal Object Completion »
Huan Ling · David Acuna · Karsten Kreis · Seung Wook Kim · Sanja Fidler -
2020 Poster: Learning compositional functions via multiplicative weight updates »
Jeremy Bernstein · Jiawei Zhao · Markus Meister · Ming-Yu Liu · Anima Anandkumar · Yisong Yue -
2020 Poster: Learning Deformable Tetrahedral Meshes for 3D Reconstruction »
Jun Gao · Wenzheng Chen · Tommy Xiang · Alec Jacobson · Morgan McGuire · Sanja Fidler -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Sanja Fidler - TBA »
Sanja Fidler -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Sanja Fidler »
Sanja Fidler -
2019 Poster: Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer »
Wenzheng Chen · Huan Ling · Jun Gao · Edward Smith · Jaakko Lehtinen · Alec Jacobson · Sanja Fidler -
2019 Demonstration: Toronto Annotation Suite »
Amlan Kar · Sanja Fidler · Jun Gao · Seung Wook Kim · Huan Ling -
2018 Poster: A Neural Compositional Paradigm for Image Captioning »
Bo Dai · Sanja Fidler · Dahua Lin -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : Connecting high-level semantics with low-level vision »
Sanja Fidler -
2017 Poster: Teaching Machines to Describe Images with Natural Language Feedback »
Huan Ling · Sanja Fidler -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Spotlight: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2009 Poster: Evaluating multi-class learning strategies in a generative hierarchical framework for object detection »
Sanja Fidler · Marko Boben · Ales Leonardis