Timezone: »
Modern kernel-based two-sample tests have shown great success in distinguishing complex, high-dimensional distributions by learning appropriate kernels (or, as a special case, classifiers). Previous work, however, has assumed that many samples are observed from both of the distributions being distinguished. In realistic scenarios with very limited numbers of data samples, it can be challenging to identify a kernel powerful enough to distinguish complex distributions. We address this issue by introducing the problem of meta two-sample testing (M2ST), which aims to exploit (abundant) auxiliary data on related tasks to find an algorithm that can quickly identify a powerful test on new target tasks. We propose two specific algorithms for this task: a generic scheme which improves over baselines, and a more tailored approach which performs even better. We provide both theoretical justification and empirical evidence that our proposed meta-testing schemes outperform learning kernel-based tests directly from scarce observations, and identify when such schemes will be successful.
Author Information
Feng Liu (University of Technology Sydney)
Wenkai Xu (Department of Statistics, University of Oxford)
Jie Lu
Danica J. Sutherland (University of British Columbia)
More from the Same Authors
-
2021 Spotlight: TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation »
Haoang Chi · Feng Liu · Wenjing Yang · Long Lan · Tongliang Liu · Bo Han · William Cheung · James Kwok -
2022 : On RKHS Choices for Assessing Graph Generators via Kernel Stein Statistics »
Wenkai Xu · Gesine D Reinert · Moritz Weckbecker -
2022 Poster: A Kernelised Stein Statistic for Assessing Implicit Generative Models »
Wenkai Xu · Gesine D Reinert -
2022 Poster: AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment of Implicit Graph Generators »
Wenkai Xu · Gesine D Reinert -
2022 Poster: Is Out-of-Distribution Detection Learnable? »
Zhen Fang · Yixuan Li · Jie Lu · Jiahua Dong · Bo Han · Feng Liu -
2021 Oral: Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign Overfitting »
Frederic Koehler · Lijia Zhou · Danica J. Sutherland · Nathan Srebro -
2021 Poster: Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign Overfitting »
Frederic Koehler · Lijia Zhou · Danica J. Sutherland · Nathan Srebro -
2021 Poster: Probabilistic Margins for Instance Reweighting in Adversarial Training »
qizhou wang · Feng Liu · Bo Han · Tongliang Liu · Chen Gong · Gang Niu · Mingyuan Zhou · Masashi Sugiyama -
2021 Poster: Self-Supervised Learning with Kernel Dependence Maximization »
Yazhe Li · Roman Pogodin · Danica J. Sutherland · Arthur Gretton -
2021 Poster: TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation »
Haoang Chi · Feng Liu · Wenjing Yang · Long Lan · Tongliang Liu · Bo Han · William Cheung · James Kwok -
2020 Poster: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2020 Spotlight: A kernel test for quasi-independence »
Tamara Fernandez · Wenkai Xu · Marc Ditzhaus · Arthur Gretton -
2019 Tutorial: Interpretable Comparison of Distributions and Models »
Wittawat Jitkrittum · Danica J. Sutherland · Arthur Gretton -
2018 Poster: On gradient regularizers for MMD GANs »
Michael Arbel · Danica J. Sutherland · Mikołaj Bińkowski · Arthur Gretton