Timezone: »

 
Poster
CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
Yusuke Tashiro · Jiaming Song · Yang Song · Stefano Ermon

Tue Dec 07 04:30 PM -- 06:00 PM (PST) @ Virtual

The imputation of missing values in time series has many applications in healthcare and finance. While autoregressive models are natural candidates for time series imputation, score-based diffusion models have recently outperformed existing counterparts including autoregressive models in many tasks such as image generation and audio synthesis, and would be promising for time series imputation. In this paper, we propose Conditional Score-based Diffusion model (CSDI), a novel time series imputation method that utilizes score-based diffusion models conditioned on observed data. Unlike existing score-based approaches, the conditional diffusion model is explicitly trained for imputation and can exploit correlations between observed values. On healthcare and environmental data, CSDI improves by 40-65% over existing probabilistic imputation methods on popular performance metrics. In addition, deterministic imputation by CSDI reduces the error by 5-20% compared to the state-of-the-art deterministic imputation methods. Furthermore, CSDI can also be applied to time series interpolation and probabilistic forecasting, and is competitive with existing baselines. The code is available at https://github.com/ermongroup/CSDI.

Author Information

Yusuke Tashiro (Japan Digital Design)
Jiaming Song (Stanford University)

I am a first year Ph.D. student in Stanford University. I think about problems in machine learning and deep learning under the supervision of Stefano Ermon. I did my undergrad at Tsinghua University, where I was lucky enough to collaborate with Jun Zhu and Lawrence Carin on scalable Bayesian machine learning.

Yang Song (Stanford University)
Stefano Ermon (Stanford)

More from the Same Authors