Timezone: »
Discovering a solution in a combinatorial space is prevalent in many real-world problems but it is also challenging due to diverse complex constraints and the vast number of possible combinations. To address such a problem, we introduce a novel formulation, combinatorial construction, which requires a building agent to assemble unit primitives (i.e., LEGO bricks) sequentially -- every connection between two bricks must follow a fixed rule, while no bricks mutually overlap. To construct a target object, we provide incomplete knowledge about the desired target (i.e., 2D images) instead of exact and explicit volumetric information to the agent. This problem requires a comprehensive understanding of partial information and long-term planning to append a brick sequentially, which leads us to employ reinforcement learning. The approach has to consider a variable-sized action space where a large number of invalid actions, which would cause overlap between bricks, exist. To resolve these issues, our model, dubbed Brick-by-Brick, adopts an action validity prediction network that efficiently filters invalid actions for an actor-critic network. We demonstrate that the proposed method successfully learns to construct an unseen object conditioned on a single image or multiple views of a target object.
Author Information
Hyunsoo Chung (SPACEWALK)
Jungtaek Kim (POSTECH)
Boris Knyazev (University of Guelph / Vector Institute)
Jinhwi Lee (POSTECH)
Graham Taylor (University of Guelph / Vector Institute)
Jaesik Park (POSTECH)
Minsu Cho (POSTECH)
More from the Same Authors
-
2020 : Combinatorial 3D Shape Generation via Sequential Assembly »
Jungtaek Kim · Hyunsoo Chung · Jinhwi Lee · Minsu Cho · Jaesik Park -
2020 : Building LEGO using Deep Generative Models of Graphs »
Rylee Thompson · Graham Taylor · Terrance DeVries · Elahe Ghalebi -
2020 : Session A, Poster 5: Fragment Relation Networks For Geometric Shape Assembly »
Jinhwi Lee -
2020 : Session A, Poster 5: Fragment Relation Networks For Geometric Shape Assembly »
Jungtaek Kim -
2021 : An Empirical Study of Neural Kernel Bandits »
Michal Lisicki · Arash Afkanpour · Graham Taylor -
2022 : Substructure-Atom Cross Attention for Molecular Representation Learning »
Jiye Kim · Seungbeom Lee · Dongwoo Kim · Sungsoo Ahn · Jaesik Park -
2022 : SeLCA: Self-Supervised Learning of Canonical Axis »
Seungwook Kim · Yoonwoo Jeong · Chunghyun Park · Jaesik Park · Minsu Cho -
2022 Poster: Learning Debiased Classifier with Biased Committee »
Nayeong Kim · SEHYUN HWANG · Sungsoo Ahn · Jaesik Park · Suha Kwak -
2022 Poster: PeRFception: Perception using Radiance Fields »
Yoonwoo Jeong · Seungjoo Shin · Junha Lee · Chris Choy · Anima Anandkumar · Minsu Cho · Jaesik Park -
2022 Poster: Peripheral Vision Transformer »
Juhong Min · Yucheng Zhao · Chong Luo · Minsu Cho -
2022 Poster: A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning »
Seunghyuk Cho · Juyong Lee · Jaesik Park · Dongwoo Kim -
2022 Poster: Draft-and-Revise: Effective Image Generation with Contextual RQ-Transformer »
Doyup Lee · Chiheon Kim · Saehoon Kim · Minsu Cho · WOOK SHIN HAN -
2021 : DeepRNG: Towards Deep Reinforcement Learning-Assisted Generative Testing of Software »
Chuan-Yung Tsai · Graham Taylor -
2021 : Neural Structure Mapping For Learning Abstract Visual Analogies »
Shashank Shekhar · Graham Taylor -
2021 Poster: Parameter Prediction for Unseen Deep Architectures »
Boris Knyazev · Michal Drozdzal · Graham Taylor · Adriana Romero Soriano -
2021 Poster: Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training »
Minguk Kang · Woohyeon Shim · Minsu Cho · Jaesik Park -
2021 Poster: Relational Self-Attention: What's Missing in Attention for Video Understanding »
Manjin Kim · Heeseung Kwon · CHUNYU WANG · Suha Kwak · Minsu Cho -
2020 : Poster Session A: 3:00 AM - 4:30 AM PST »
Taras Khakhulin · Ravichandra Addanki · Jinhwi Lee · Jungtaek Kim · Piotr Januszewski · Konrad Czechowski · Francesco Landolfi · Lovro Vrček · Oren Neumann · Claudius Gros · Betty Fabre · Lukas Faber · Lucas Anquetil · Alberto Franzin · Tommaso Bendinelli · Sergey Bartunov -
2020 Poster: CircleGAN: Generative Adversarial Learning across Spherical Circles »
Woohyeon Shim · Minsu Cho -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: ContraGAN: Contrastive Learning for Conditional Image Generation »
Minguk Kang · Jaesik Park -
2020 Poster: Instance Selection for GANs »
Terrance DeVries · Michal Drozdzal · Graham Taylor -
2020 Session: Orals & Spotlights Track 08: Deep Learning »
Graham Taylor · Mario Lucic -
2019 Poster: Understanding Attention and Generalization in Graph Neural Networks »
Boris Knyazev · Graham Taylor · Mohamed Amer -
2019 Poster: Mining GOLD Samples for Conditional GANs »
Sangwoo Mo · Chiheon Kim · Sungwoong Kim · Minsu Cho · Jinwoo Shin -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2015 : Learning Multi-scale Temporal Dynamics with Recurrent Neural Networks »
Graham Taylor -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines »
Matthew D Zeiler · Graham Taylor · Leonid Sigal · Iain Matthews · Rob Fergus -
2010 Poster: Pose-Sensitive Embedding by Nonlinear NCA Regression »
Graham Taylor · Rob Fergus · George Williams · Ian Spiro · Christoph Bregler -
2008 Poster: The Recurrent Temporal Restricted Boltzmann Machine »
Ilya Sutskever · Geoffrey E Hinton · Graham Taylor -
2006 Poster: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis -
2006 Spotlight: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis