Timezone: »
3D object detection often involves complicated training and testing pipelines, which require substantial domain knowledge about individual datasets. Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds. Our method models 3D object detection as message passing on a dynamic graph, generalizing the DGCNN framework to predict a set of objects. In our construction, we remove the necessity of post-processing via object confidence aggregation or non-maximum suppression. To facilitate object detection from sparse point clouds, we also propose a set-to-set distillation approach customized to 3D detection. This approach aligns the outputs of the teacher model and the student model in a permutation-invariant fashion, significantly simplifying knowledge distillation for the 3D detection task. Our method achieves state-of-the-art performance on autonomous driving benchmarks. We also provide abundant analysis of the detection model and distillation framework.
Author Information
Yue Wang (MIT)
Justin Solomon (MIT)
More from the Same Authors
-
2023 Poster: Self-Consistent Velocity Matching of Probability Flows »
Lingxiao Li · Samuel Hurault · Justin Solomon -
2021 Poster: Large-Scale Wasserstein Gradient Flows »
Petr Mokrov · Alexander Korotin · Lingxiao Li · Aude Genevay · Justin Solomon · Evgeny Burnaev -
2021 Poster: MarioNette: Self-Supervised Sprite Learning »
Dmitriy Smirnov · MICHAEL GHARBI · Matthew Fisher · Vitor Guizilini · Alexei Efros · Justin Solomon -
2021 Poster: Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark »
Alexander Korotin · Lingxiao Li · Aude Genevay · Justin Solomon · Alexander Filippov · Evgeny Burnaev -
2020 Poster: Continuous Regularized Wasserstein Barycenters »
Lingxiao Li · Aude Genevay · Mikhail Yurochkin · Justin Solomon -
2019 Poster: PRNet: Self-Supervised Learning for Partial-to-Partial Registration »
Yue Wang · Justin Solomon -
2019 Poster: Alleviating Label Switching with Optimal Transport »
Pierre Monteiller · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin Solomon · Mikhail Yurochkin -
2019 Poster: Hierarchical Optimal Transport for Document Representation »
Mikhail Yurochkin · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin Solomon -
2017 Poster: Parallel Streaming Wasserstein Barycenters »
Matt Staib · Sebastian Claici · Justin Solomon · Stefanie Jegelka -
2017 Tutorial: A Primer on Optimal Transport »
Marco Cuturi · Justin Solomon