Timezone: »
The transformer architectures, based on self-attention mechanism and convolution-free design, recently found superior performance and booming applications in computer vision. However, the discontinuous patch-wise tokenization process implicitly introduces jagged artifacts into attention maps, arising the traditional problem of aliasing for vision transformers. Aliasing effect occurs when discrete patterns are used to produce high frequency or continuous information, resulting in the indistinguishable distortions. Recent researches have found that modern convolution networks still suffer from this phenomenon. In this work, we analyze the uncharted problem of aliasing in vision transformer and explore to incorporate anti-aliasing properties. Specifically, we propose a plug-and-play Aliasing-Reduction Module (ARM) to alleviate the aforementioned issue. We investigate the effectiveness and generalization of the proposed method across multiple tasks and various vision transformer families. This lightweight design consistently attains a clear boost over several famous structures. Furthermore, our module also improves data efficiency and robustness of vision transformers.
Author Information
Shengju Qian (The Chinese University of Hong Kong)
Hao Shao (Tsinghua University, Tsinghua University)
Yi Zhu (AWS)
Mu Li (Amazon)
Jiaya Jia (CUHK)
More from the Same Authors
-
2021 : Benchmarking Multimodal AutoML for Tabular Data with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alexander Smola -
2022 Poster: Unifying Voxel-based Representation with Transformer for 3D Object Detection »
Yanwei Li · Yilun Chen · Xiaojuan Qi · Zeming Li · Jian Sun · Jiaya Jia -
2022 : Benchmarking Robustness under Distribution Shift of Multimodal Image-Text Models »
Jielin Qiu · Yi Zhu · Xingjian Shi · Zhiqiang Tang · DING ZHAO · Bo Li · Mu Li -
2022 Spotlight: Lightning Talks 4A-3 »
Zhihan Gao · Yabin Wang · Xingyu Qu · Luziwei Leng · Mingqing Xiao · Bohan Wang · Yu Shen · Zhiwu Huang · Xingjian Shi · Qi Meng · Yupeng Lu · Diyang Li · Qingyan Meng · Kaiwei Che · Yang Li · Hao Wang · Huishuai Zhang · Zongpeng Zhang · Kaixuan Zhang · Xiaopeng Hong · Xiaohan Zhao · Di He · Jianguo Zhang · Yaofeng Tu · Bin Gu · Yi Zhu · Ruoyu Sun · Yuyang (Bernie) Wang · Zhouchen Lin · Qinghu Meng · Wei Chen · Wentao Zhang · Bin CUI · Jie Cheng · Zhi-Ming Ma · Mu Li · Qinghai Guo · Dit-Yan Yeung · Tie-Yan Liu · Jianxing Liao -
2022 Spotlight: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2022 Poster: Earthformer: Exploring Space-Time Transformers for Earth System Forecasting »
Zhihan Gao · Xingjian Shi · Hao Wang · Yi Zhu · Yuyang (Bernie) Wang · Mu Li · Dit-Yan Yeung -
2022 Expo Workshop: AutoGluon: Empowering (MultiModal) AutoML for the next 10 Million users »
Xingjian Shi · Nick Erickson · Caner Turkmen · Yi Zhu -
2021 Poster: Progressive Coordinate Transforms for Monocular 3D Object Detection »
Li Wang · Li Zhang · Yi Zhu · Zhi Zhang · Tong He · Mu Li · Xiangyang Xue -
2020 Poster: CSER: Communication-efficient SGD with Error Reset »
Cong Xie · Shuai Zheng · Sanmi Koyejo · Indranil Gupta · Mu Li · Haibin Lin -
2020 Poster: LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single Image Super-resolution and Beyond »
Wenbo Li · Kun Zhou · Lu Qi · Nianjuan Jiang · Jiangbo Lu · Jiaya Jia -
2018 Poster: Image Inpainting via Generative Multi-column Convolutional Neural Networks »
Yi Wang · Xin Tao · Xiaojuan Qi · Xiaoyong Shen · Jiaya Jia -
2018 Poster: Sequential Context Encoding for Duplicate Removal »
Lu Qi · Shu Liu · Jianping Shi · Jiaya Jia -
2016 Poster: Visual Question Answering with Question Representation Update (QRU) »
Ruiyu Li · Jiaya Jia -
2014 Poster: Deep Convolutional Neural Network for Image Deconvolution »
Li Xu · Jimmy S. Ren · Ce Liu · Jiaya Jia