Timezone: »
As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely impacted by predicted outcomes (e.g., an applicant denied a loan) with recourse---i.e., a description of how they can change their features to obtain a positive outcome. We propose a novel algorithm that leverages adversarial training and PAC confidence sets to learn models that theoretically guarantee recourse to affected individuals with high probability without sacrificing accuracy. We demonstrate the efficacy of our approach via extensive experiments on real data.
Author Information
Alexis Ross (Allen Institute for Artificial Intelligence (AI2))
Himabindu Lakkaraju (Stanford University)
Osbert Bastani (University of Pennsylvania)
More from the Same Authors
-
2021 Spotlight: Program Synthesis Guided Reinforcement Learning for Partially Observed Environments »
Yichen Yang · Jeevana Priya Inala · Osbert Bastani · Yewen Pu · Armando Solar-Lezama · Martin Rinard -
2021 : PAC Synthesis of Machine Learning Programs »
Osbert Bastani -
2021 : Synthesizing Video Trajectory Queries »
Stephen Mell · Favyen Bastani · Stephan Zdancewic · Osbert Bastani -
2021 : Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning »
Jason Yecheng Ma · Andrew Shen · Osbert Bastani · Dinesh Jayaraman -
2021 Poster: Towards Robust and Reliable Algorithmic Recourse »
Sohini Upadhyay · Shalmali Joshi · Himabindu Lakkaraju -
2021 Poster: Conservative Offline Distributional Reinforcement Learning »
Jason Yecheng Ma · Dinesh Jayaraman · Osbert Bastani -
2021 Poster: Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Anna Hilgard · Sameer Singh · Himabindu Lakkaraju -
2021 Poster: Compositional Reinforcement Learning from Logical Specifications »
Kishor Jothimurugan · Suguman Bansal · Osbert Bastani · Rajeev Alur -
2021 Poster: Program Synthesis Guided Reinforcement Learning for Partially Observed Environments »
Yichen Yang · Jeevana Priya Inala · Osbert Bastani · Yewen Pu · Armando Solar-Lezama · Martin Rinard -
2021 Poster: Counterfactual Explanations Can Be Manipulated »
Dylan Slack · Anna Hilgard · Himabindu Lakkaraju · Sameer Singh -
2018 Poster: Verifiable Reinforcement Learning via Policy Extraction »
Osbert Bastani · Yewen Pu · Armando Solar-Lezama -
2016 Poster: Confusions over Time: An Interpretable Bayesian Model to Characterize Trends in Decision Making »
Himabindu Lakkaraju · Jure Leskovec