Timezone: »
Graphs have been widely used in data mining and machine learning due to their unique representation of real-world objects and their interactions. As graphs are getting bigger and bigger nowadays, it is common to see their subgraphs separately collected and stored in multiple local systems. Therefore, it is natural to consider the subgraph federated learning setting, where each local system holds a small subgraph that may be biased from the distribution of the whole graph. Hence, the subgraph federated learning aims to collaboratively train a powerful and generalizable graph mining model without directly sharing their graph data. In this work, towards the novel yet realistic setting of subgraph federated learning, we propose two major techniques: (1) FedSage, which trains a GraphSage model based on FedAvg to integrate node features, link structures, and task labels on multiple local subgraphs; (2) FedSage+, which trains a missing neighbor generator along FedSage to deal with missing links across local subgraphs. Empirical results on four real-world graph datasets with synthesized subgraph federated learning settings demonstrate the effectiveness and efficiency of our proposed techniques. At the same time, consistent theoretical implications are made towards their generalization ability on the global graphs.
Author Information
Ke ZHANG (The University of Hong Kong)
Carl Yang (Emory University)
Xiaoxiao Li (UBC)
Lichao Sun (Lehigh University)
Siu Ming Yiu (the University of Hong Kong, The University of Hong Kong)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Subgraph Federated Learning with Missing Neighbor Generation »
Fri. Dec 10th 12:30 -- 02:00 AM Room
More from the Same Authors
-
2022 : Improving Fairness in Image Classification via Sketching »
Ruichen Yao · cui ziteng · Xiaoxiao Li · Lin Gu -
2022 : Shift-Robust Node Classification via Graph Clustering Co-training »
Qi Zhu · Chao Zhang · Chanyoung Park · Carl Yang · Jiawei Han -
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Brain Network Transformer »
Xuan Kan · Wei Dai · Hejie Cui · Zilong Zhang · Ying Guo · Carl Yang -
2022 Workshop: Medical Imaging meets NeurIPS »
DOU QI · Konstantinos Kamnitsas · Yuankai Huo · Xiaoxiao Li · Daniel Moyer · Danielle Pace · Jonas Teuwen · Islem Rekik -
2022 Poster: Distributional Reward Estimation for Effective Multi-agent Deep Reinforcement Learning »
Jifeng Hu · Yanchao Sun · Hechang Chen · Sili Huang · haiyin piao · Yi Chang · Lichao Sun -
2022 Poster: BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs »
Kay Liu · Yingtong Dou · Yue Zhao · Xueying Ding · Xiyang Hu · Ruitong Zhang · Kaize Ding · Canyu Chen · Hao Peng · Kai Shu · Lichao Sun · Jundong Li · George H Chen · Zhihao Jia · Philip S Yu -
2022 Poster: Brain Network Transformer »
Xuan Kan · Wei Dai · Hejie Cui · Zilong Zhang · Ying Guo · Carl Yang -
2021 Workshop: Medical Imaging meets NeurIPS »
DOU QI · Marleen de Bruijne · Ben Glocker · Aasa Feragen · Herve Lombaert · Ipek Oguz · Jonas Teuwen · Islem Rekik · Darko Stern · Xiaoxiao Li -
2021 Poster: Federated Graph Classification over Non-IID Graphs »
Han Xie · Jing Ma · Li Xiong · Carl Yang -
2021 Poster: Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation »
Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li -
2021 Poster: Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization »
Qi Zhu · Carl Yang · Yidan Xu · Haonan Wang · Chao Zhang · Jiawei Han