Timezone: »
Poster
Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings
Raef Bassily · Cristóbal Guzmán · Michael Menart
We study differentially private stochastic optimization in convex and non-convex settings. For the convex case, we focus on the family of non-smooth generalized linear losses (GLLs). Our algorithm for the $\ell_2$ setting achieves optimal excess population risk in near-linear time, while the best known differentially private algorithms for general convex losses run in super-linear time. Our algorithm for the $\ell_1$ setting has nearly-optimal excess population risk $\tilde{O}\big(\sqrt{\frac{\log{d}}{n}}\big)$, and circumvents the dimension dependent lower bound of \cite{Asi:2021} for general non-smooth convex losses. In the differentially private non-convex setting, we provide several new algorithms for approximating stationary points of the population risk. For the $\ell_1$-case with smooth losses and polyhedral constraint, we provide the first nearly dimension independent rate, $\tilde O\big(\frac{\log^{2/3}{d}}{{n^{1/3}}}\big)$ in linear time. For the constrained $\ell_2$-case, with smooth losses, we obtain a linear-time algorithm with rate $\tilde O\big(\frac{1}{n^{3/10}d^{1/10}}+\big(\frac{d}{n^2}\big)^{1/5}\big)$. Finally, for the $\ell_2$-case we provide the first method for {\em non-smooth weakly convex} stochastic optimization with rate $\tilde O\big(\frac{1}{n^{1/4}}+\big(\frac{d}{n^2}\big)^{1/6}\big)$ which matches the best existing non-private algorithm when $d= O(\sqrt{n})$. We also extend all our results above for the non-convex $\ell_2$ setting to the $\ell_p$ setting, where $1 < p \leq 2$, with only polylogarithmic (in the dimension) overhead in the rates.
Author Information
Raef Bassily (The Ohio State University)
Cristóbal Guzmán (U of Twente)
Michael Menart (Ohio State University)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 6A-2 »
Yichuan Mo · Botao Yu · Gang Li · Zezhong Xu · Haoran Wei · Arsene Fansi Tchango · Raef Bassily · Haoyu Lu · Qi Zhang · Songming Liu · Mingyu Ding · Peiling Lu · Yifei Wang · Xiang Li · Dongxian Wu · Ping Guo · Wen Zhang · Hao Zhongkai · Mehryar Mohri · Rishab Goel · Yisen Wang · Yifei Wang · Yangguang Zhu · Zhi Wen · Ananda Theertha Suresh · Chengyang Ying · Yujie Wang · Peng Ye · Rui Wang · Nanyi Fei · Hui Chen · Yiwen Guo · Wei Hu · Chenglong Liu · Julien Martel · Yuqi Huo · Wu Yichao · Hang Su · Yisen Wang · Peng Wang · Huajun Chen · Xu Tan · Jun Zhu · Ding Liang · Zhiwu Lu · Joumana Ghosn · Shanshan Zhang · Wei Ye · Ze Cheng · Shikun Zhang · Tao Qin · Tie-Yan Liu -
2022 Spotlight: Differentially Private Learning with Margin Guarantees »
Raef Bassily · Mehryar Mohri · Ananda Theertha Suresh -
2022 : Contributed Talks 3 »
Cristóbal Guzmán · Fangshuo Liao · Vishwak Srinivasan · Zhiyuan Li -
2022 Workshop: OPT 2022: Optimization for Machine Learning »
Courtney Paquette · Sebastian Stich · Quanquan Gu · Cristóbal Guzmán · John Duchi -
2022 Poster: Stochastic Halpern Iteration with Variance Reduction for Stochastic Monotone Inclusions »
Xufeng Cai · Chaobing Song · Cristóbal Guzmán · Jelena Diakonikolas -
2022 Poster: Differentially Private Generalized Linear Models Revisited »
Raman Arora · Raef Bassily · Cristóbal Guzmán · Michael Menart · Enayat Ullah -
2022 Poster: Task-level Differentially Private Meta Learning »
Xinyu Zhou · Raef Bassily -
2022 Poster: Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness »
Sarah Sachs · Hedi Hadiji · Tim van Erven · Cristóbal Guzmán -
2022 Poster: Differentially Private Learning with Margin Guarantees »
Raef Bassily · Mehryar Mohri · Ananda Theertha Suresh -
2021 : Q&A with Cristóbal Guzmán »
Cristóbal Guzmán -
2021 : Non-Euclidean Differentially Private Stochastic Convex Optimization, Cristóbal Guzmán »
Cristóbal Guzmán -
2021 Poster: Best-case lower bounds in online learning »
Cristóbal Guzmán · Nishant Mehta · Ali Mortazavi -
2020 Poster: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Spotlight: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Poster: Learning from Mixtures of Private and Public Populations »
Raef Bassily · Shay Moran · Anupama Nandi