`

Timezone: »

 
Poster
Local Explanation of Dialogue Response Generation
Yi-Lin Tuan · Connor Pryor · Wenhu Chen · Lise Getoor · William Yang Wang

Fri Dec 10 08:30 AM -- 10:00 AM (PST) @ None #None
In comparison to the interpretation of classification models, the explanation of sequence generation models is also an important problem, however it has seen little attention. In this work, we study model-agnostic explanations of a representative text generation task -- dialogue response generation. Dialog response generation is challenging with its open-ended sentences and multiple acceptable responses. To gain insights into the reasoning process of a generation model, we propose a new method, local explanation of response generation (LERG) that regards the explanations as the mutual interaction of segments in input and output sentences. LERG views the sequence prediction as uncertainty estimation of a human response and then creates explanations by perturbing the input and calculating the certainty change over the human response. We show that LERG adheres to desired properties of explanations for text generation including unbiased approximation, consistency and cause identification. Empirically, our results show that our method consistently improves other widely used methods on proposed automatic- and human- evaluation metrics for this new task by $4.4$-$12.8$\%. Our analysis demonstrates that LERG can extract both explicit and implicit relations between input and output segments.

Author Information

Yi-Lin Tuan (University of California, Santa Barbara)
Connor Pryor (University of California, Santa Cruz)
Wenhu Chen (University of California, Santa Barbara)
Lise Getoor (UC Santa Cruz)

Lise Getoor is a professor in the Computer Science Department at the University of California, Santa Cruz. Her research areas include machine learning, data integration and reasoning under uncertainty, with an emphasis on graph and network data. She has over 250 publications and extensive experience with machine learning and probabilistic modeling methods for graph and network data. She is a Fellow of the Association for Artificial Intelligence, an elected board member of the International Machine Learning Society, serves on the board of the Computing Research Association (CRA), and was co-chair for ICML 2011. She is a recipient of an NSF Career Award and eleven best paper and best student paper awards. She received her PhD from Stanford University in 2001, her MS from UC Berkeley, and her BS from UC Santa Barbara, and was a professor in the Computer Science Department at the University of Maryland, College Park from 2001-2013.

William Yang Wang (University of California, Santa Barbara)

William Wang is the Co-Director of UC Santa Barbara's Natural Language Processing group and Center for Responsible Machine Learning. He is the Duncan and Suzanne Mellichamp Chair in Artificial Intelligence and Designs, and an Associate Professor in the Department of Computer Science at the University of California, Santa Barbara. He received his PhD from School of Computer Science, Carnegie Mellon University. He has broad interests in Artificial Intelligence, including statistical relational learning, information extraction, computational social science, dialog & generation, and vision. He has published more than 100 papers at leading NLP/AI/ML conferences and journals, and received best paper awards (or nominations) at ASRU 2013, CIKM 2013, EMNLP 2015, and CVPR 2019, a DARPA Young Faculty Award (Class of 2018), an IEEE AI's 10 to Watch Award (Class of 2020), an NSF CAREER Award (2021), two Google Faculty Research Awards (2018, 2019), three IBM Faculty Awards (2017-2019), two Facebook Research Awards (2018, 2019), an Amazon AWS Machine Learning Research Award, a JP Morgan Chase Faculty Research Award, an Adobe Research Award in 2018, and the Richard King Mellon Presidential Fellowship in 2011. He frequently serves as an Area Chair or Senior Area Chair for NAACL, ACL, EMNLP, and AAAI. He is an elected member of IEEE Speech and Language Processing Technical Committee (2021-2023) and a member of ACM Future of Computing Academy. In addition to research, William enjoys writing scientific articles that impact the broader online community. His work and opinions appear at major tech media outlets such as Wired, VICE, Scientific American, Fortune, Fast Company, NASDAQ, The Next Web, Law.com, and Mental Floss.

More from the Same Authors