Timezone: »
Poster
Generalized Linear Bandits with Local Differential Privacy
Yuxuan Han · Zhipeng Liang · Yang Wang · Jiheng Zhang
Contextual bandit algorithms are useful in personalized online decision-making. However, many applications such as personalized medicine and online advertising require the utilization of individual-specific information for effective learning, while user's data should remain private from the server due to privacy concerns. This motivates the introduction of local differential privacy (LDP), a stringent notion in privacy, to contextual bandits. In this paper, we design LDP algorithms for stochastic generalized linear bandits to achieve the same regret bound as in non-privacy settings. Our main idea is to develop a stochastic gradient-based estimator and update mechanism to ensure LDP. We then exploit the flexibility of stochastic gradient descent (SGD), whose theoretical guarantee for bandit problems is rarely explored, in dealing with generalized linear bandits. We also develop an estimator and update mechanism based on Ordinary Least Square (OLS) for linear bandits. Finally, we conduct experiments with both simulation and real-world datasets to demonstrate the consistently superb performance of our algorithms under LDP constraints with reasonably small parameters $(\varepsilon, \delta)$ to ensure strong privacy protection.
Author Information
Yuxuan Han (HKUST)
Zhipeng Liang (Hong Kong University of Science and Technology)
Yang Wang (The Hong Kong University of Science and Technology)
Jiheng Zhang (The Hong Kong University of Science and Technology)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup »
Zongbo Han · Zhipeng Liang · Fan Yang · Liu Liu · Lanqing Li · Yatao Bian · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Poster: UMIX: Improving Importance Weighting for Subpopulation Shift via Uncertainty-Aware Mixup »
Zongbo Han · Zhipeng Liang · Fan Yang · Liu Liu · Lanqing Li · Yatao Bian · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2021 Poster: Non-asymptotic Error Bounds for Bidirectional GANs »
Shiao Liu · Yunfei Yang · Jian Huang · Yuling Jiao · Yang Wang