Timezone: »
Communication is compositional if complex signals can be represented as a combination of simpler subparts. In this paper, we theoretically show that inductive biases on both the training framework and the data are needed to develop a compositional communication. Moreover, we prove that compositionality spontaneously arises in the signaling games, where agents communicate over a noisy channel. We experimentally confirm that a range of noise levels, which depends on the model and the data, indeed promotes compositionality. Finally, we provide a comprehensive study of this dependence and report results in terms of recently studied compositionality metrics: topographical similarity, conflict count, and context independence.
Author Information
Łukasz Kuciński (Polish Academy of Sciences)
Tomasz Korbak (University of Sussex)
Paweł Kołodziej (Google)
Piotr Miłoś (Polish Academy of Sciences, University of Oxford)
More from the Same Authors
-
2020 : Paper 44: CARLA Real Traffic Scenarios – novel training ground and benchmark for autonomous driving »
Błażej Osiński · Piotr Miłoś · Adam Jakubowski · Krzysztof Galias · Silviu Homoceanu -
2021 : Off-Policy Correction For Multi-Agent Reinforcement Learning »
Michał Zawalski · Błażej Osiński · Henryk Michalewski · Piotr Miłoś -
2021 : Continuous Control With Ensemble Deep Deterministic Policy Gradients »
Piotr Januszewski · Mateusz Olko · Michał Królikowski · Jakub Swiatkowski · Marcin Andrychowicz · Łukasz Kuciński · Piotr Miłoś -
2022 : Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery »
Mateusz Olko · Michał Zając · Aleksandra Nowak · Nino Scherrer · Yashas Annadani · Stefan Bauer · Łukasz Kuciński · Piotr Miłoś -
2022 : Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search »
Michał Zawalski · Michał Tyrolski · Konrad Czechowski · Damian Stachura · Piotr Piękos · Tomasz Odrzygóźdź · Yuhuai Wu · Łukasz Kuciński · Piotr Miłoś -
2022 : The Surprising Effectiveness of Latent World Models for Continual Reinforcement Learning »
Samuel Kessler · Piotr Miłoś · Jack Parker-Holder · S Roberts -
2022 Poster: Disentangling Transfer in Continual Reinforcement Learning »
Maciej Wolczyk · Michał Zając · Razvan Pascanu · Łukasz Kuciński · Piotr Miłoś -
2022 Poster: On Reinforcement Learning and Distribution Matching for Fine-Tuning Language Models with no Catastrophic Forgetting »
Tomasz Korbak · Hady Elsahar · Germán Kruszewski · Marc Dymetman -
2022 Poster: Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers »
Albert Qiaochu Jiang · Wenda Li · Szymon Tworkowski · Konrad Czechowski · Tomasz Odrzygóźdź · Piotr Miłoś · Yuhuai Wu · Mateja Jamnik -
2021 Poster: Subgoal Search For Complex Reasoning Tasks »
Konrad Czechowski · Tomasz Odrzygóźdź · Marek Zbysiński · Michał Zawalski · Krzysztof Olejnik · Yuhuai Wu · Łukasz Kuciński · Piotr Miłoś -
2021 Poster: Continual World: A Robotic Benchmark For Continual Reinforcement Learning »
Maciej Wołczyk · Michał Zając · Razvan Pascanu · Łukasz Kuciński · Piotr Miłoś -
2019 : Coffee + Posters »
Changhao Chen · Nils Gählert · Edouard Leurent · Johannes Lehner · Apratim Bhattacharyya · Harkirat Singh Behl · Teck Yian Lim · Shiho Kim · Jelena Novosel · Błażej Osiński · Arindam Das · Ruobing Shen · Jeffrey Hawke · Joachim Sicking · Babak Shahian Jahromi · Theja Tulabandhula · Claudio Michaelis · Evgenia Rusak · WENHANG BAO · Hazem Rashed · JP Chen · Amin Ansari · Jaekwang Cha · Mohamed Zahran · Daniele Reda · Jinhyuk Kim · Kim Dohyun · Ho Suk · Junekyo Jhung · Alexander Kister · Matthias Fahrland · Adam Jakubowski · Piotr Miłoś · Jean Mercat · Bruno Arsenali · Silviu Homoceanu · Xiao-Yang Liu · Philip Torr · Ahmad El Sallab · Ibrahim Sobh · Anurag Arnab · Krzysztof Galias