Timezone: »
We study first-order optimization algorithms for computing the barycenter of Gaussian distributions with respect to the optimal transport metric. Although the objective is geodesically non-convex, Riemannian gradient descent empirically converges rapidly, in fact faster than off-the-shelf methods such as Euclidean gradient descent and SDP solvers. This stands in stark contrast to the best-known theoretical results, which depend exponentially on the dimension. In this work, we prove new geodesic convexity results which provide stronger control of the iterates, yielding a dimension-free convergence rate. Our techniques also enable the analysis of two related notions of averaging, the entropically-regularized barycenter and the geometric median, providing the first convergence guarantees for these problems.
Author Information
Jason Altschuler (MIT)
Sinho Chewi (Massachusetts Institute of Technology)
Patrik R Gerber (Massachusetts Institute of Technology)
Austin Stromme (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent »
Dates n/a. Room
More from the Same Authors
-
2022 : Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions »
Sitan Chen · Sinho Chewi · Jerry Li · Yuanzhi Li · Adil Salim · Anru Zhang -
2022 Poster: Variational inference via Wasserstein gradient flows »
Marc Lambert · Sinho Chewi · Francis Bach · Silvère Bonnabel · Philippe Rigollet -
2021 Workshop: Optimal Transport and Machine Learning »
Jason Altschuler · Charlotte Bunne · Laetitia Chapel · Marco Cuturi · Rémi Flamary · Gabriel Peyré · Alexandra Suvorikova -
2021 Poster: Efficient constrained sampling via the mirror-Langevin algorithm »
Kwangjun Ahn · Sinho Chewi -
2020 Poster: Exponential ergodicity of mirror-Langevin diffusions »
Sinho Chewi · Thibaut Le Gouic · Chen Lu · Tyler Maunu · Philippe Rigollet · Austin Stromme -
2020 Poster: SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence »
Sinho Chewi · Thibaut Le Gouic · Chen Lu · Tyler Maunu · Philippe Rigollet -
2017 Poster: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration »
Jason Altschuler · Jonathan Niles-Weed · Philippe Rigollet -
2017 Spotlight: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration »
Jason Altschuler · Jonathan Niles-Weed · Philippe Rigollet