Timezone: »
Computer-aided design (CAD) is the most widely used modeling approach for technical design. The typical starting point in these designs is 2D sketches which can later be extruded and combined to obtain complex three-dimensional assemblies. Such sketches are typically composed of parametric primitives, such as points, lines, and circular arcs, augmented with geometric constraints linking the primitives, such as coincidence, parallelism, or orthogonality. Sketches can be represented as graphs, with the primitives as nodes and the constraints as edges. Training a model to automatically generate CAD sketches can enable several novel workflows, but is challenging due to the complexity of the graphs and the heterogeneity of the primitives and constraints. In particular, each type of primitive and constraint may require a record of different size and parameter types.We propose SketchGen as a generative model based on a transformer architecture to address the heterogeneity problem by carefully designing a sequential language for the primitives and constraints that allows distinguishing between different primitive or constraint types and their parameters, while encouraging our model to re-use information across related parameters, encoding shared structure. A particular highlight of our work is the ability to produce primitives linked via constraints that enables the final output to be further regularized via a constraint solver. We evaluate our model by demonstrating constraint prediction for given sets of primitives and full sketch generation from scratch, showing that our approach significantly out performs the state-of-the-art in CAD sketch generation.
Author Information
Wamiq Para (King Abdullah University of Science and Technology)
Shariq Bhat (KAUST)
Paul Guerrero (Adobe Research)
Tom Kelly (University of Leeds)
Niloy Mitra (University College London)
Leonidas Guibas (stanford.edu)
Peter Wonka (KAUST)
More from the Same Authors
-
2022 : Breaking the Symmetry: Resolving Symmetry Ambiguities in Equivariant Neural Networks »
Sidhika Balachandar · Adrien Poulenard · Congyue Deng · Leonidas Guibas -
2022 Poster: NeuForm: Adaptive Overfitting for Neural Shape Editing »
Connor Lin · Niloy Mitra · Gordon Wetzstein · Leonidas Guibas · Paul Guerrero -
2022 Poster: Object Scene Representation Transformer »
Mehdi S. M. Sajjadi · Daniel Duckworth · Aravindh Mahendran · Sjoerd van Steenkiste · Filip Pavetic · Mario Lucic · Leonidas Guibas · Klaus Greff · Thomas Kipf -
2021 Poster: Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks »
Tolga Birdal · Aaron Lou · Leonidas Guibas · Umut Simsekli -
2021 Poster: Leveraging SE(3) Equivariance for Self-supervised Category-Level Object Pose Estimation from Point Clouds »
Xiaolong Li · Yijia Weng · Li Yi · Leonidas Guibas · A. Abbott · Shuran Song · He Wang -
2021 Poster: A Multi-Implicit Neural Representation for Fonts »
Pradyumna Reddy · Zhifei Zhang · Zhaowen Wang · Matthew Fisher · Hailin Jin · Niloy Mitra -
2020 : QA: Leonidas J. Guibas »
Leonidas Guibas -
2020 : Invited Talk: Leonidas J. Guibas »
Leonidas Guibas -
2020 Poster: Generative 3D Part Assembly via Dynamic Graph Learning »
jialei huang · Guanqi Zhan · Qingnan Fan · Kaichun Mo · Lin Shao · Baoquan Chen · Leonidas Guibas · Hao Dong -
2020 Poster: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2020 Poster: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Spotlight: ShapeFlow: Learnable Deformation Flows Among 3D Shapes »
Chiyu Jiang · Jingwei Huang · Andrea Tagliasacchi · Leonidas Guibas -
2020 Spotlight: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2020 Poster: BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images »
Thu Nguyen-Phuoc · Christian Richardt · Long Mai · Yongliang Yang · Niloy Mitra -
2019 Poster: Multiview Aggregation for Learning Category-Specific Shape Reconstruction »
Srinath Sridhar · Davis Rempe · Julien Valentin · Bouaziz Sofien · Leonidas Guibas -
2019 Poster: A Condition Number for Joint Optimization of Cycle-Consistent Networks »
Leonidas Guibas · Qixing Huang · Zhenxiao Liang -
2019 Spotlight: A Condition Number for Joint Optimization of Cycle-Consistent Networks »
Leonidas Guibas · Qixing Huang · Zhenxiao Liang -
2018 Poster: Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from Functions »
Minhyuk Sung · Hao Su · Ronald Yu · Leonidas Guibas -
2017 Poster: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space »
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas -
2016 Poster: FPNN: Field Probing Neural Networks for 3D Data »
Yangyan Li · Soeren Pirk · Hao Su · Charles R Qi · Leonidas Guibas -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2014 Poster: A Safe Screening Rule for Sparse Logistic Regression »
Jie Wang · Jiayu Zhou · Jun Liu · Peter Wonka · Jieping Ye -
2013 Poster: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2013 Spotlight: Lasso Screening Rules via Dual Polytope Projection »
Jie Wang · Jiayu Zhou · Peter Wonka · Jieping Ye -
2013 Poster: Wavelets on Graphs via Deep Learning »
Raif Rustamov · Leonidas Guibas -
2013 Demonstration: Codewebs: a Pedagogical Search Engine for Code Submissions to a MOOC »
Jonathan Huang · Chris Piech · Andy Nguyen · Leonidas Guibas -
2010 Poster: Multi-Stage Dantzig Selector »
Ji Liu · Peter Wonka · Jieping Ye -
2007 Oral: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Poster: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas