Timezone: »
Federated learning has emerged as an important paradigm for training machine learning models in different domains. For graph-level tasks such as graph classification, graphs can also be regarded as a special type of data samples, which can be collected and stored in separate local systems. Similar to other domains, multiple local systems, each holding a small set of graphs, may benefit from collaboratively training a powerful graph mining model, such as the popular graph neural networks (GNNs). To provide more motivation towards such endeavors, we analyze real-world graphs from different domains to confirm that they indeed share certain graph properties that are statistically significant compared with random graphs. However, we also find that different sets of graphs, even from the same domain or same dataset, are non-IID regarding both graph structures and node features. To handle this, we propose a graph clustered federated learning (GCFL) framework that dynamically finds clusters of local systems based on the gradients of GNNs, and theoretically justify that such clusters can reduce the structure and feature heterogeneity among graphs owned by the local systems. Moreover, we observe the gradients of GNNs to be rather fluctuating in GCFL which impedes high-quality clustering, and design a gradient sequence-based clustering mechanism based on dynamic time warping (GCFL+). Extensive experimental results and in-depth analysis demonstrate the effectiveness of our proposed frameworks.
Author Information
Han Xie (Emory University)
Jing Ma (Emory University)
Li Xiong (Emory University)
Carl Yang (Emory University)
More from the Same Authors
-
2021 Spotlight: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2022 : Shift-Robust Node Classification via Graph Clustering Co-training »
Qi Zhu · Chao Zhang · Chanyoung Park · Carl Yang · Jiawei Han -
2023 Poster: Better with Less: A Data-Centric Prespective on Pre-Training Graph Neural Networks »
Jiarong Xu · Renhong Huang · XIN JIANG · Yuxuan Cao · Carl Yang · Chunping Wang · YANG YANG -
2023 Poster: Open Visual Knowledge Extraction via Relation-Oriented Multimodality Model Prompting »
Hejie Cui · Xinyu Fang · Zihan Zhang · Ran Xu · Xuan Kan · Xin Liu · Manling Li · Yangqiu Song · Carl Yang -
2023 Poster: WalkLM: A Uniform Language Model Fine-tuning Framework for Attributed Graph Embedding »
Yanchao Tan · Zihao Zhou · Hang Lv · Weiming Liu · Carl Yang -
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Brain Network Transformer »
Xuan Kan · Wei Dai · Hejie Cui · Zilong Zhang · Ying Guo · Carl Yang -
2022 Poster: Brain Network Transformer »
Xuan Kan · Wei Dai · Hejie Cui · Zilong Zhang · Ying Guo · Carl Yang -
2021 Poster: Subgraph Federated Learning with Missing Neighbor Generation »
Ke ZHANG · Carl Yang · Xiaoxiao Li · Lichao Sun · Siu Ming Yiu -
2021 Poster: Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation »
Jinming Cui · Chaochao Chen · Lingjuan Lyu · Carl Yang · Wang Li -
2021 Poster: Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization »
Qi Zhu · Carl Yang · Yidan Xu · Haonan Wang · Chao Zhang · Jiawei Han