`

Timezone: »

 
Poster
Identifiable Generative models for Missing Not at Random Data Imputation
Chao Ma · Cheng Zhang

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @ None #None

Real-world datasets often have missing values associated with complex generative processes, where the cause of the missingness may not be fully observed. This is known as missing not at random (MNAR) data. However, many imputation methods do not take into account the missingness mechanism, resulting in biased imputation values when MNAR data is present. Although there are a few methods that have considered the MNAR scenario, their model's identifiability under MNAR is generally not guaranteed. That is, model parameters can not be uniquely determined even with infinite data samples, hence the imputation results given by such models can still be biased. This issue is especially overlooked by many modern deep generative models. In this work, we fill in this gap by systematically analyzing the identifiability of generative models under MNAR. Furthermore, we propose a practical deep generative model which can provide identifiability guarantees under mild assumptions, for a wide range of MNAR mechanisms. Our method demonstrates a clear advantage for tasks on both synthetic data and multiple real-world scenarios with MNAR data.

Author Information

Chao Ma (University of Cambridge)
Cheng Zhang (Disney Research)

More from the Same Authors

  • 2021 : Accurate Imputation and Efficient Data Acquisitionwith Transformer-based VAEs »
    Sarah Lewis · Tatiana Matejovicova · Yingzhen Li · Angus Lamb · Yordan Zaykov · Miltiadis Allamanis · Cheng Zhang
  • 2021 : Accurate Imputation and Efficient Data Acquisitionwith Transformer-based VAEs »
    Sarah Lewis · Tatiana Matejovicova · Yingzhen Li · Angus Lamb · Yordan Zaykov · Miltiadis Allamanis · Cheng Zhang
  • 2021 Poster: Sparse Uncertainty Representation in Deep Learning with Inducing Weights »
    Hippolyt Ritter · Martin Kukla · Cheng Zhang · Yingzhen Li
  • 2021 Poster: Functional Variational Inference based on Stochastic Process Generators »
    Chao Ma · Jose Miguel Hernández-Lobato
  • 2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
    Chao Ma · Sebastian Tschiatschek · Richard Turner · Jose Miguel Hernández-Lobato · Cheng Zhang
  • 2018 : Poster Session 1 »
    Stefan Gadatsch · Danil Kuzin · Navneet Kumar · Patrick Dallaire · Tom Ryder · Remus-Petru Pop · Nathan Hunt · Adam Kortylewski · Sophie Burkhardt · Mahmoud Elnaggar · Dieterich Lawson · Yifeng Li · J. Jon Ryu · Juhan Bae · Micha Livne · Tim Pearce · Mariia Vladimirova · Jason E. Ramapuram · Jiaming Zeng · Xinyu Hu · Eric Jiawei He · Danielle Maddix · Arunesh Mittal · Albert Shaw · Tuan Anh Le · Alexander Sagel · Lisha Chen · Victor Gallego · Mahdi Karami · Zihao Zhang · Tal Kachman · Noah Weber · Matt Benatan · Kumar K Sricharan · Vincent Cartillier · Ivan Ovinnikov · Buu Phan · Mahmoud Hossam · Liu Ziyin · Valery Kharitonov · Eugene Golikov · Qiang Zhang · JaeMyung Kim · Sebastian Farquhar · Jishnu Mukhoti · Xu Hu · Gregory Gundersen · lavanya Tekumalla · Paris Perdikaris · Ershad Banijamali · Siddhartha Jain · Ge Liu · Martin Gottwald · Katy Blumer · Sukmin Yun · Ranganath Krishnan · Roman Novak · Yilun Du · Yu Gong · Beliz Gokkaya · Jessica Ai · Daniel Duckworth · Johannes von Oswald · Christian Henning · LP Morency · Ali Ghodsi · Mahesh Subedar · Jean-Pascal Pfister · Rémi Lebret · Chao Ma · Aleksander Wieczorek · Laurence Perreault Levasseur
  • 2017 : Introduction »
    Cheng Zhang · Francisco Ruiz · Dustin Tran · James McInerney · Stephan Mandt
  • 2017 Poster: Perturbative Black Box Variational Inference »
    Robert Bamler · Cheng Zhang · Manfred Opper · Stephan Mandt