Timezone: »
Poster
Federated Linear Contextual Bandits
Ruiquan Huang · Weiqiang Wu · Jing Yang · Cong Shen
This paper presents a novel federated linear contextual bandits model, where individual clients face different $K$-armed stochastic bandits coupled through common global parameters. By leveraging the geometric structure of the linear rewards, a collaborative algorithm called Fed-PE is proposed to cope with the heterogeneity across clients without exchanging local feature vectors or raw data. Fed-PE relies on a novel multi-client G-optimal design, and achieves near-optimal regrets for both disjoint and shared parameter cases with logarithmic communication costs. In addition, a new concept called collinearly-dependent policies is introduced, based on which a tight minimax regret lower bound for the disjoint parameter case is derived. Experiments demonstrate the effectiveness of the proposed algorithms on both synthetic and real-world datasets.
Author Information
Ruiquan Huang (The Pennsylvania State University)
Weiqiang Wu (University of Maryland, College Park)
Jing Yang (Pennsylvania State University)
Cong Shen (University of Virginia)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2022 Poster: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2021 Poster: (Almost) Free Incentivized Exploration from Decentralized Learning Agents »
Chengshuai Shi · Haifeng Xu · Wei Xiong · Cong Shen -
2021 Poster: Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization »
Chengshuai Shi · Wei Xiong · Cong Shen · Jing Yang -
2020 Poster: Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification »
Hyun-Suk Lee · Yao Zhang · William Zame · Cong Shen · Jang-Won Lee · Mihaela van der Schaar