Timezone: »
Domain generalization refers to the problem where we aim to train a model on data from a set of source domains so that the model can generalize to unseen target domains. Naively training a model on the aggregate set of data (pooled from all source domains) has been shown to perform suboptimally, since the information learned by that model might be domain-specific and generalize imperfectly to target domains. To tackle this problem, a predominant domain generalization approach is to learn some domain-invariant information for the prediction task, aiming at a good generalization across domains. In this paper, we propose a theoretically grounded method to learn a domain-invariant representation by enforcing the representation network to be invariant under all transformation functions among domains. We next introduce the use of generative adversarial networks to learn such domain transformations in a possible implementation of our method in practice. We demonstrate the effectiveness of our method on several widely used datasets for the domain generalization problem, on all of which we achieve competitive results with state-of-the-art models.
Author Information
A. Tuan Nguyen (University of Oxford)
Toan Tran (Vinai artificial intelligence application and research JSC)
Yarin Gal (University of Oxford)

Yarin leads the Oxford Applied and Theoretical Machine Learning (OATML) group. He is an Associate Professor of Machine Learning at the Computer Science department, University of Oxford. He is also the Tutorial Fellow in Computer Science at Christ Church, Oxford, and a Turing Fellow at the Alan Turing Institute, the UK’s national institute for data science and artificial intelligence. Prior to his move to Oxford he was a Research Fellow in Computer Science at St Catharine’s College at the University of Cambridge. He obtained his PhD from the Cambridge machine learning group, working with Prof Zoubin Ghahramani and funded by the Google Europe Doctoral Fellowship. He made substantial contributions to early work in modern Bayesian deep learning—quantifying uncertainty in deep learning—and developed ML/AI tools that can inform their users when the tools are “guessing at random”. These tools have been deployed widely in industry and academia, with the tools used in medical applications, robotics, computer vision, astronomy, in the sciences, and by NASA. Beyond his academic work, Yarin works with industry on deploying robust ML tools safely and responsibly. He co-chairs the NASA FDL AI committee, and is an advisor with Canadian medical imaging company Imagia, Japanese robotics company Preferred Networks, as well as numerous startups.
Atilim Gunes Baydin (University of Oxford)
More from the Same Authors
-
2020 : Paper 40: Real2sim: Automatic Generation of Open Street Map Towns For Autonomous Driving Benchmarks »
Panagiotis Tigas · Yarin Gal -
2020 Meetup: MeetUp: Oxford, UK »
Yarin Gal -
2021 Spotlight: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 : Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks »
Andrey Malinin · Neil Band · Yarin Gal · Mark Gales · Alexander Ganshin · German Chesnokov · Alexey Noskov · Andrey Ploskonosov · Liudmila Prokhorenkova · Ivan Provilkov · Vatsal Raina · Vyas Raina · Denis Roginskiy · Mariya Shmatova · Panagiotis Tigas · Boris Yangel -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : DeDUCE: Generating Counterfactual Explanations At Scale »
Benedikt Höltgen · Lisa Schut · Jan Brauner · Yarin Gal -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : DARTS without a Validation Set: Optimizing the Marginal Likelihood »
Miroslav Fil · Robin Ru · Clare Lyle · Yarin Gal -
2021 : Learning the solar latent space: sigma-variational autoencoders for multiple channel solar imaging »
Edward Brown · Christopher Bridges · Bernard Benson · Atilim Gunes Baydin -
2021 : Simultaneous Multivariate Forecast of Space Weather Indices using Deep Neural Network Ensembles »
Bernard Benson · Christopher Bridges · Atilim Gunes Baydin -
2021 : Using Non-Linear Causal Models to StudyAerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : Dropout and Ensemble Networks for Thermospheric Density Uncertainty Estimation »
Stefano Bonasera · Giacomo Acciarini · Jorge Pérez-Hernández · Bernard Benson · Edward Brown · Eric Sutton · Moriba Jah · Christopher Bridges · Atilim Gunes Baydin -
2021 : Can Network Flatness Explain the Training Speed-Generalisation Connection? »
Albert Q. Jiang · Clare Lyle · Lisa Schut · Yarin Gal -
2021 : Decomposing Representations for Deterministic Uncertainty Estimation »
Haiwen Huang · Joost van Amersfoort · Yarin Gal -
2021 : On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty »
Joost van Amersfoort · Lewis Smith · Andrew Jesson · Oscar Key · Yarin Gal -
2021 : Contrastive Representation Learning with Trainable Augmentation Channel »
Masanori Koyama · Kentaro Minami · Takeru Miyato · Yarin Gal -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Offline neural contextual bandits: Pessimism, Optimization and Generalization »
Thanh Nguyen-Tang · Sunil Gupta · A. Tuan Nguyen · Svetha Venkatesh -
2022 : Discovering Long-period Exoplanets using Deep Learning with Citizen Science Labels »
Shreshth A Malik · Nora Eisner · Chris Lintott · Yarin Gal -
2022 : Inferring molecular complexity from mass spectrometry data using machine learning »
Timothy Gebhard · Aaron C. Bell · Jian Gong · Jaden J. A. Hastings · George Fricke · Nathalie Cabrol · Scott Sandford · Michael Phillips · Kimberley Warren-Rhodes · Atilim Gunes Baydin -
2022 : Using uncertainty-aware machine learning models to study aerosol-cloud interactions »
Maëlys Solal · Andrew Jesson · Yarin Gal · Alyson Douglas -
2022 : TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness Prediction »
Pascal Notin · Lodevicus van Niekerk · Aaron Kollasch · Daniel Ritter · Yarin Gal · Debora Marks -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : What 'Out-of-distribution' Is and Is Not »
Sebastian Farquhar · Yarin Gal -
2022 : Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation »
Lorenz Kuhn · Yarin Gal · Sebastian Farquhar -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2023 Poster: ProteinNPT: Improving protein property prediction and design with non-parametric transformers »
Pascal Notin · Ruben Weitzman · Debora Marks · Yarin Gal -
2023 Poster: ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and Design »
Pascal Notin · Aaron Kollasch · Daniel Ritter · Lodevicus van Niekerk · Nathan Rollins · Steffan Paul · Ada Shaw · Ruben Weitzman · Jonathan Frazer · Mafalda Dias · Dinko Franceschi · Rose Orenbuch · Han Spinner · Yarin Gal · Debora Marks -
2023 Workshop: NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences »
Brian Nord · Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Siddharth Mishra-Sharma · Benjamin Nachman · Kyle Cranmer · Gilles Louppe · Savannah Thais -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: Learning Fractional White Noises in Neural Stochastic Differential Equations »
Anh Tong · Thanh Nguyen-Tang · Toan Tran · Jaesik Choi -
2022 Poster: Scalable Sensitivity and Uncertainty Analyses for Causal-Effect Estimates of Continuous-Valued Interventions »
Andrew Jesson · Alyson Douglas · Peter Manshausen · Maëlys Solal · Nicolai Meinshausen · Philip Stier · Yarin Gal · Uri Shalit -
2022 Poster: Interventions, Where and How? Experimental Design for Causal Models at Scale »
Panagiotis Tigas · Yashas Annadani · Andrew Jesson · Bernhard Schölkopf · Yarin Gal · Stefan Bauer -
2022 Poster: Stochastic Multiple Target Sampling Gradient Descent »
Hoang Phan · Ngoc Tran · Trung Le · Toan Tran · Nhat Ho · Dinh Phung -
2022 Poster: Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Thomas Rainforth -
2021 : Human-in-the-loop Bayesian Deep Learning »
Yarin Gal -
2021 : [S7] DeDUCE: Generating Counterfactual Explanations At Scale »
Benedikt Höltgen · Lisa Schut · Jan Brauner · Yarin Gal -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Session 3 | Contributed talk: Maximilian Dax, "Amortized Bayesian inference of gravitational waves with normalizing flows" »
Maximilian Dax · Atilim Gunes Baydin -
2021 : Session 3 | Invited talk: Laure Zanna, "The future of climate modeling in the age of machine learning" »
Laure Zanna · Atilim Gunes Baydin -
2021 : Session 3 | Invited talk: Surya Ganguli, "From the geometry of high dimensional energy landscapes to optimal annealing in a dissipative many body quantum optimizer" »
Surya Ganguli · Atilim Gunes Baydin -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Session 2 | Contributed talk: George Stein, "Self-supervised similarity search for large scientific datasets" »
George Stein · Atilim Gunes Baydin -
2021 : Session 2 | Invited talk: Megan Ansdell, "NASA's efforts & opportunities to support ML in the Physical Sciences" »
Megan Ansdell · Atilim Gunes Baydin -
2021 : Session 1 | Contributed talk: Tian Xie, "Crystal Diffusion Variational Autoencoder for Periodic Material Generation" »
Tian Xie · Atilim Gunes Baydin -
2021 : Session 1 | Invited talk: Bingqing Cheng, "Predicting material properties with the help of machine learning" »
Bingqing Cheng · Atilim Gunes Baydin -
2021 : Session 1 | Invited talk: Max Welling, "Accelerating simulations of nature, both classical and quantum, with equivariant deep learning" »
Max Welling · Atilim Gunes Baydin -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2021 Poster: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 : Evaluating Approximate Inference in Bayesian Deep Learning + Q&A »
Andrew Gordon Wilson · Pavel Izmailov · Matthew Hoffman · Yarin Gal · Yingzhen Li · Melanie F. Pradier · Sharad Vikram · Andrew Foong · Sanae Lotfi · Sebastian Farquhar -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Improving black-box optimization in VAE latent space using decoder uncertainty »
Pascal Notin · José Miguel Hernández-Lobato · Yarin Gal -
2021 Poster: Exploiting Domain-Specific Features to Enhance Domain Generalization »
Manh-Ha Bui · Toan Tran · Anh Tran · Dinh Phung -
2021 Poster: On Learning Domain-Invariant Representations for Transfer Learning with Multiple Sources »
Trung Phung · Trung Le · Tung-Long Vuong · Toan Tran · Anh Tran · Hung Bui · Dinh Phung -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 : Shifts Challenge: Robustness and Uncertainty under Real-World Distributional Shift + Q&A »
Andrey Malinin · Neil Band · German Chesnokov · Yarin Gal · Alexander Ganshin · Mark Gales · Alexey Noskov · Liudmila Prokhorenkova · Mariya Shmatova · Vyas Raina · Vatsal Raina · Panagiotis Tigas · Boris Yangel -
2021 Poster: Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 Poster: Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning »
Jannik Kossen · Neil Band · Clare Lyle · Aidan Gomez · Thomas Rainforth · Yarin Gal -
2020 : Session 3 | Invited talk: Laura Waller, "Physics-based Learning for Computational Microscopy" »
Laura Waller · Atilim Gunes Baydin -
2020 : Session 2 | Invited talk: Phiala Shanahan, "Generative Flow Models for Gauge Field Theory" »
Phiala Shanahan · Atilim Gunes Baydin -
2020 : Session 2 | Invited talk: Estelle Inack, "Variational Neural Annealing" »
Estelle Inack · Atilim Gunes Baydin -
2020 : Session 1 | Invited talk: Michael Bronstein, "Geometric Deep Learning for Functional Protein Design" »
Michael Bronstein · Atilim Gunes Baydin -
2020 : Session 1 | Invited talk: Lauren Anderson, "3D Milky Way Dust Map using a Scalable Gaussian Process" »
Lauren Anderson · Atilim Gunes Baydin -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations »
Sebastian Farquhar · Lewis Smith · Yarin Gal -
2020 Poster: A Bayesian Perspective on Training Speed and Model Selection »
Clare Lyle · Lisa Schut · Robin Ru · Yarin Gal · Mark van der Wilk -
2020 Poster: Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models »
Andrew Jesson · Sören Mindermann · Uri Shalit · Yarin Gal -
2020 Poster: Black-Box Optimization with Local Generative Surrogates »
Sergey Shirobokov · Vladislav Belavin · Michael Kagan · Andrei Ustyuzhanin · Atilim Gunes Baydin -
2020 Poster: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2020 Spotlight: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Mrinank Sharma · Sören Mindermann · Jan Brauner · Gavin Leech · Anna Stephenson · Tomáš Gavenčiak · Jan Kulveit · Yee Whye Teh · Leonid Chindelevitch · Yarin Gal -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Program Transformations for ML »
Pascal Lamblin · Atilim Gunes Baydin · Alexander Wiltschko · Bart van Merriënboer · Emily Fertig · Barak Pearlmutter · David Duvenaud · Laurent Hascoet -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning »
Andreas Kirsch · Joost van Amersfoort · Yarin Gal -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2018 : TBC 15 »
Yarin Gal -
2018 : Invited Speaker #5 Yarin Gal »
Yarin Gal -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 : Opening Remarks »
Yarin Gal -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2017 : Panel discussion »
Atilim Gunes Baydin · Adam Paszke · Jonathan Hüser · Jean Utke · Laurent Hascoet · Jeffrey Siskind · Jan Hueckelheim · Andreas Griewank -
2017 : Beyond backprop: automatic differentiation in machine learning »
Atilim Gunes Baydin -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Workshop: Deep Learning for Physical Sciences »
Atilim Gunes Baydin · Mr. Prabhat · Kyle Cranmer · Frank Wood -
2017 Poster: Concrete Dropout »
Yarin Gal · Jiri Hron · Alex Kendall -
2017 Poster: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2017 Spotlight: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2017 Poster: Real Time Image Saliency for Black Box Classifiers »
Piotr Dabkowski · Yarin Gal -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: A Theoretically Grounded Application of Dropout in Recurrent Neural Networks »
Yarin Gal · Zoubin Ghahramani -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen