Timezone: »
Poster
Efficient Equivariant Network
Lingshen He · Yuxuan Chen · zhengyang shen · Yiming Dong · Yisen Wang · Zhouchen Lin
Convolutional neural networks (CNNs) have dominated the field of Computer Vision and achieved great success due to their built-in translation equivariance. Group equivariant CNNs (G-CNNs) that incorporate more equivariance can significantly improve the performance of conventional CNNs. However, G-CNNs are faced with two major challenges: \emph{spatial-agnostic problem} and \emph{expensive computational cost}. In this work, we propose a general framework of previous equivariant models, which includes G-CNNs and equivariant self-attention layers as special cases. Under this framework, we explicitly decompose the feature aggregation operation into a kernel generator and an encoder, and decouple the spatial and extra geometric dimensions in the computation. Therefore, our filters are essentially dynamic rather than being spatial-agnostic. We further show that our \emph{E}quivariant model is parameter \emph{E}fficient and computation \emph{E}fficient by complexity analysis, and also data \emph{E}fficient by experiments, so we call our model $E^4$-Net. Extensive experiments verify that our model can significantly improve previous works with smaller model size.Especially, under the setting of training on $1/5$ data of CIFAR10, our model improves G-CNNs by $5\%+$ accuracy,while using only $56\%$ parameters and $68\%$ FLOPs.
Author Information
Lingshen He (Peking University)
Yuxuan Chen (University of Electronic Science and Technology of China)
zhengyang shen (Peking University)
Yiming Dong (Peking University)
Yisen Wang (Peking University)
Zhouchen Lin (Peking University)
More from the Same Authors
-
2021 Spotlight: Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Yisen Wang · Zhouchen Lin -
2021 Spotlight: Clustering Effect of Adversarial Robust Models »
Yang Bai · Xin Yan · Yong Jiang · Shu-Tao Xia · Yisen Wang -
2021 Poster: Clustering Effect of Adversarial Robust Models »
Yang Bai · Xin Yan · Yong Jiang · Shu-Tao Xia · Yisen Wang -
2021 Poster: On Training Implicit Models »
Zhengyang Geng · Xin-Yu Zhang · Shaojie Bai · Yisen Wang · Zhouchen Lin -
2021 Poster: Dissecting the Diffusion Process in Linear Graph Convolutional Networks »
Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2021 Poster: Adversarial Neuron Pruning Purifies Backdoored Deep Models »
Dongxian Wu · Yisen Wang -
2021 Poster: Gauge Equivariant Transformer »
Lingshen He · Yiming Dong · Yisen Wang · Dacheng Tao · Zhouchen Lin -
2021 Poster: Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Yisen Wang · Zhouchen Lin -
2021 Poster: Towards a Unified Game-Theoretic View of Adversarial Perturbations and Robustness »
Jie Ren · Die Zhang · Yisen Wang · Lu Chen · Zhanpeng Zhou · Yiting Chen · Xu Cheng · Xin Wang · Meng Zhou · Jie Shi · Quanshi Zhang -
2021 Poster: Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks »
Hanxun Huang · Yisen Wang · Sarah Erfani · Quanquan Gu · James Bailey · Xingjun Ma -
2021 Poster: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks »
Chen Ma · Xiangyu Guo · Li Chen · Jun-Hai Yong · Yisen Wang -
2021 Poster: Residual Relaxation for Multi-view Representation Learning »
Yifei Wang · Zhengyang Geng · Feng Jiang · Chuming Li · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2021 Poster: MoriĆ© Attack (MA): A New Potential Risk of Screen Photos »
Dantong Niu · Ruohao Guo · Yisen Wang -
2020 Poster: ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding »
Yibo Yang · Hongyang Li · Shan You · Fei Wang · Chen Qian · Zhouchen Lin -
2020 Poster: Adversarial Weight Perturbation Helps Robust Generalization »
Dongxian Wu · Shu-Tao Xia · Yisen Wang -
2018 Workshop: NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications »
Lixin Fan · Zhouchen Lin · Max Welling · Yurong Chen · Werner Bailer -
2018 Poster: SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator »
Cong Fang · Chris Junchi Li · Zhouchen Lin · Tong Zhang -
2018 Spotlight: SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator »
Cong Fang · Chris Junchi Li · Zhouchen Lin · Tong Zhang -
2018 Poster: Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution »
Zhisheng Zhong · Tiancheng Shen · Yibo Yang · Zhouchen Lin · Chao Zhang -
2017 Poster: Faster and Non-ergodic O(1/K) Stochastic Alternating Direction Method of Multipliers »
Cong Fang · Feng Cheng · Zhouchen Lin -
2015 Poster: Accelerated Proximal Gradient Methods for Nonconvex Programming »
Huan Li · Zhouchen Lin