Timezone: »
This paper considers the problem of estimating the unknown intervention targets in a causal directed acyclic graph from observational and interventional data. The focus is on soft interventions in linear structural equation models (SEMs). Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets even for linear SEMs. This severely limits their scalability and sample complexity. This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets. The pivotal idea is to estimate the intervention sites from the difference between the precision matrices associated with the observational and interventional datasets. It involves repeatedly estimating such sites in different subsets of variables. The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class. Consistency, Markov equivalency, and sample complexity are established analytically. Finally, simulation results on both real and synthetic data demonstrate the gains of the proposed approach for scalable causal structure recovery. Implementation of the algorithm and the code to reproduce the simulation results are available at \url{https://github.com/bvarici/intervention-estimation}.
Author Information
Burak Varici (Rensselaer Polytechnic Institute)
Karthikeyan Shanmugam (IBM Research, NY)
Prasanna Sattigeri (IBM Research)
Ali Tajer (Rensselaer Polytechnic Institute)
More from the Same Authors
-
2022 : Physics-Constrained Deep Learning for Climate Downscaling »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Generating physically-consistent high-resolution climate data with hard-constrained neural networks »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 Poster: Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting »
Prasanna Sattigeri · Soumya Ghosh · Inkit Padhi · Pierre Dognin · Kush Varshney -
2022 Expo Talk Panel: Uncertainty quantification for fair and transparent AI-assisted decision-making »
Prasanna Sattigeri -
2021 Poster: CoFrNets: Interpretable Neural Architecture Inspired by Continued Fractions »
Isha Puri · Amit Dhurandhar · Tejaswini Pedapati · Karthikeyan Shanmugam · Dennis Wei · Kush Varshney -
2021 Poster: Finite-Sample Analysis of Off-Policy TD-Learning via Generalized Bellman Operators »
Zaiwei Chen · Siva Theja Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam -
2021 Poster: Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination »
Arpan Mukherjee · Ali Tajer · Pin-Yu Chen · Payel Das -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 Poster: Structure Learning with Side Information: Sample Complexity »
Saurabh Sihag · Ali Tajer -
2019 Poster: Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks »
Joshua Lee · Prasanna Sattigeri · Gregory Wornell -
2018 Demonstration: PatentAI: IP Infringement Detection with Enhanced Paraphrase Identification »
Youssef Drissi · Karthikeyan Natesan Ramamurthy · Prasanna Sattigeri -
2018 Poster: Co-regularized Alignment for Unsupervised Domain Adaptation »
Abhishek Kumar · Prasanna Sattigeri · Kahini Wadhawan · Leonid Karlinsky · Rogerio Feris · Bill Freeman · Gregory Wornell -
2017 Poster: Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference »
Abhishek Kumar · Prasanna Sattigeri · Tom Fletcher -
2017 Poster: Experimental Design for Learning Causal Graphs with Latent Variables »
Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2017 Poster: Model-Powered Conditional Independence Test »
Rajat Sen · Ananda Theertha Suresh · Karthikeyan Shanmugam · Alex Dimakis · Sanjay Shakkottai