Timezone: »
We propose heavy ball neural ordinary differential equations (HBNODEs), leveraging the continuous limit of the classical momentum accelerated gradient descent, to improve neural ODEs (NODEs) training and inference. HBNODEs have two properties that imply practical advantages over NODEs: (i) The adjoint state of an HBNODE also satisfies an HBNODE, accelerating both forward and backward ODE solvers, thus significantly reducing the number of function evaluations (NFEs) and improving the utility of the trained models. (ii) The spectrum of HBNODEs is well structured, enabling effective learning of long-term dependencies from complex sequential data. We verify the advantages of HBNODEs over NODEs on benchmark tasks, including image classification, learning complex dynamics, and sequential modeling. Our method requires remarkably fewer forward and backward NFEs, is more accurate, and learns long-term dependencies more effectively than the other ODE-based neural network models. Code is available at \url{https://github.com/hedixia/HeavyBallNODE}.
Author Information
Hedi Xia (University of California, Los Angeles)
Vai Suliafu (University of Utah)
Hangjie Ji (North Carolina State University)
Tan Nguyen (UCLA)
I am currently a postdoctoral scholar in the Department of Mathematics at the University of California, Los Angeles, working with Dr. Stanley J. Osher. I have obtained my Ph.D. in Machine Learning from Rice University, where I was advised by Dr. Richard G. Baraniuk. My research is focused on the intersection of Deep Learning, Probabilistic Modeling, Optimization, and ODEs/PDEs. I gave an invited talk in the Deep Learning Theory Workshop at NeurIPS 2018 and organized the 1st Workshop on Integration of Deep Neural Models and Differential Equations at ICLR 2020. I also had two awesome long internships with Amazon AI and NVIDIA Research, during which he worked with Dr. Anima Anandkumar. I am the recipient of the prestigious Computing Innovation Postdoctoral Fellowship (CIFellows) from the Computing Research Association (CRA), the NSF Graduate Research Fellowship, and the IGERT Neuroengineering Traineeship. I received his MSEE and BSEE from Rice in May 2018 and May 2014, respectively.
Andrea Bertozzi (UCLA)
Stanley Osher (UCLA)
Bao Wang (University of Utah)
More from the Same Authors
-
2022 Poster: Finite-Time Analysis of Adaptive Temporal Difference Learning with Deep Neural Networks »
Tao Sun · Dongsheng Li · Bao Wang -
2022 Poster: Improving Neural Ordinary Differential Equations with Nesterov's Accelerated Gradient Method »
Ho Huu Nghia Nguyen · Tan Nguyen · Huyen Vo · Stanley Osher · Thieu Vo -
2022 Poster: FourierFormer: Transformer Meets Generalized Fourier Integral Theorem »
Tan Nguyen · Minh Pham · Tam Nguyen · Khai Nguyen · Stanley Osher · Nhat Ho -
2022 Poster: Improving Transformer with an Admixture of Attention Heads »
Tan Nguyen · Tam Nguyen · Hai Do · Khai Nguyen · Vishwanath Saragadam · Minh Pham · Khuong Duy Nguyen · Nhat Ho · Stanley Osher -
2021 : Stan Osher Talk »
Stanley Osher -
2021 Poster: FMMformer: Efficient and Flexible Transformer via Decomposed Near-field and Far-field Attention »
Tan Nguyen · Vai Suliafu · Stanley Osher · Long Chen · Bao Wang -
2020 Poster: MomentumRNN: Integrating Momentum into Recurrent Neural Networks »
Tan Nguyen · Richard Baraniuk · Andrea Bertozzi · Stanley Osher · Bao Wang -
2020 Poster: Neural Networks with Recurrent Generative Feedback »
Yujia Huang · James Gornet · Sihui Dai · Zhiding Yu · Tan Nguyen · Doris Tsao · Anima Anandkumar -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies »
Bao Wang · Zuoqiang Shi · Stanley Osher -
2018 : Contributed Talk 3 »
Tan Nguyen -
2018 Poster: Deep Neural Nets with Interpolating Function as Output Activation »
Bao Wang · Xiyang Luo · Zhen Li · Wei Zhu · Zuoqiang Shi · Stanley Osher -
2016 Poster: A Probabilistic Framework for Deep Learning »
Ankit Patel · Tan Nguyen · Richard Baraniuk