Timezone: »
The Configurable Markov Decision Process framework includes two entities: a Reinforcement Learning agent and a configurator that can modify some environmental parameters to improve the agent's performance. This presupposes that the two actors have the same reward functions. What if the configurator does not have the same intentions as the agent? This paper introduces the Non-Cooperative Configurable Markov Decision Process, a setting that allows having two (possibly different) reward functions for the configurator and the agent. Then, we consider an online learning problem, where the configurator has to find the best among a finite set of possible configurations. We propose two learning algorithms to minimize the configurator's expected regret, which exploits the problem's structure, depending on the agent's feedback. While a naive application of the UCB algorithm yields a regret that grows indefinitely over time, we show that our approach suffers only bounded regret. Furthermore, we empirically show the performance of our algorithm in simulated domains.
Author Information
Giorgia Ramponi (ETH Zurich)
Alberto Maria Metelli (Politecnico di Milano)
Alessandro Concetti (Politecnico di Milano)
Marcello Restelli (Politecnico di Milano)
More from the Same Authors
-
2021 Spotlight: Subgaussian and Differentiable Importance Sampling for Off-Policy Evaluation and Learning »
Alberto Maria Metelli · Alessio Russo · Marcello Restelli -
2021 : Policy Optimization via Optimal Policy Evaluation »
Alberto Maria Metelli · Samuele Meta · Marcello Restelli -
2022 : Multi-Armed Bandit Problem with Temporally-Partitioned Rewards »
Giulia Romano · Andrea Agostini · Francesco Trovò · Nicola Gatti · Marcello Restelli -
2022 : Provably Efficient Causal Model-Based Reinforcement Learning for Environment-Agnostic Generalization »
Mirco Mutti · Riccardo De Santi · Emanuele Rossi · Juan Calderon · Michael Bronstein · Marcello Restelli -
2022 Poster: Multi-Fidelity Best-Arm Identification »
Riccardo Poiani · Alberto Maria Metelli · Marcello Restelli -
2022 Poster: Challenging Common Assumptions in Convex Reinforcement Learning »
Mirco Mutti · Riccardo De Santi · Piersilvio De Bartolomeis · Marcello Restelli -
2022 Poster: Off-Policy Evaluation with Deficient Support Using Side Information »
Nicolò Felicioni · Maurizio Ferrari Dacrema · Marcello Restelli · Paolo Cremonesi -
2021 Poster: Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection »
Matteo Papini · Andrea Tirinzoni · Aldo Pacchiano · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta -
2021 Poster: Subgaussian and Differentiable Importance Sampling for Off-Policy Evaluation and Learning »
Alberto Maria Metelli · Alessio Russo · Marcello Restelli -
2020 Poster: An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits »
Andrea Tirinzoni · Matteo Pirotta · Marcello Restelli · Alessandro Lazaric -
2020 Poster: Inverse Reinforcement Learning from a Gradient-based Learner »
Giorgia Ramponi · Gianluca Drappo · Marcello Restelli -
2020 Session: Orals & Spotlights Track 31: Reinforcement Learning »
Dotan Di Castro · Marcello Restelli -
2019 Poster: Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters »
Alberto Maria Metelli · Amarildo Likmeta · Marcello Restelli -
2018 Poster: Policy Optimization via Importance Sampling »
Alberto Maria Metelli · Matteo Papini · Francesco Faccio · Marcello Restelli -
2018 Poster: Transfer of Value Functions via Variational Methods »
Andrea Tirinzoni · Rafael Rodriguez Sanchez · Marcello Restelli -
2018 Oral: Policy Optimization via Importance Sampling »
Alberto Maria Metelli · Matteo Papini · Francesco Faccio · Marcello Restelli -
2017 Poster: Compatible Reward Inverse Reinforcement Learning »
Alberto Maria Metelli · Matteo Pirotta · Marcello Restelli -
2017 Poster: Adaptive Batch Size for Safe Policy Gradients »
Matteo Papini · Matteo Pirotta · Marcello Restelli -
2014 Poster: Sparse Multi-Task Reinforcement Learning »
Daniele Calandriello · Alessandro Lazaric · Marcello Restelli -
2013 Poster: Adaptive Step-Size for Policy Gradient Methods »
Matteo Pirotta · Marcello Restelli · Luca Bascetta -
2011 Poster: Transfer from Multiple MDPs »
Alessandro Lazaric · Marcello Restelli -
2007 Spotlight: Reinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods »
Alessandro Lazaric · Marcello Restelli · Andrea Bonarini -
2007 Poster: Reinforcement Learning in Continuous Action Spaces through Sequential Monte Carlo Methods »
Alessandro Lazaric · Marcello Restelli · Andrea Bonarini