`

Timezone: »

 
Poster
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Greg Ver Steeg · Aram Galstyan

Tue Dec 07 04:30 PM -- 06:00 PM (PST) @ None #None

Sampling from an unnormalized probability distribution is a fundamental problem in machine learning with applications including Bayesian modeling, latent factor inference, and energy-based model training. After decades of research, variations of MCMC remain the default approach to sampling despite slow convergence. Auxiliary neural models can learn to speed up MCMC, but the overhead for training the extra model can be prohibitive. We propose a fundamentally different approach to this problem via a new Hamiltonian dynamics with a non-Newtonian momentum. In contrast to MCMC approaches like Hamiltonian Monte Carlo, no stochastic step is required. Instead, the proposed deterministic dynamics in an extended state space exactly sample the target distribution, specified by an energy function, under an assumption of ergodicity. Alternatively, the dynamics can be interpreted as a normalizing flow that samples a specified energy model without training. The proposed Energy Sampling Hamiltonian (ESH) dynamics have a simple form that can be solved with existing ODE solvers, but we derive a specialized solver that exhibits much better performance. ESH dynamics converge faster than their MCMC competitors enabling faster, more stable training of neural network energy models.

Author Information

Greg Ver Steeg (USC Information Sciences Institute)
Aram Galstyan (USC Information Sciences Institute)

More from the Same Authors

  • 2021 Poster: Information-theoretic generalization bounds for black-box learning algorithms »
    Hrayr Harutyunyan · Maxim Raginsky · Greg Ver Steeg · Aram Galstyan
  • 2021 Poster: Implicit SVD for Graph Representation Learning »
    Sami A Abu-El-Haija · Hesham Mostafa · Marcel Nassar · Valentino Crespi · Greg Ver Steeg · Aram Galstyan
  • 2020 Workshop: Deep Learning through Information Geometry »
    Pratik Chaudhari · Alexander Alemi · Varun Jog · Dhagash Mehta · Frank Nielsen · Stefano Soatto · Greg Ver Steeg
  • 2019 : Poster Session »
    Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis
  • 2019 Poster: Fast structure learning with modular regularization »
    Greg Ver Steeg · Hrayr Harutyunyan · Daniel Moyer · Aram Galstyan
  • 2019 Spotlight: Fast structure learning with modular regularization »
    Greg Ver Steeg · Hrayr Harutyunyan · Daniel Moyer · Aram Galstyan
  • 2019 Poster: Exact Rate-Distortion in Autoencoders via Echo Noise »
    Rob Brekelmans · Daniel Moyer · Aram Galstyan · Greg Ver Steeg
  • 2018 Poster: Invariant Representations without Adversarial Training »
    Daniel Moyer · Shuyang Gao · Rob Brekelmans · Aram Galstyan · Greg Ver Steeg
  • 2017 : Coffee break and Poster Session II »
    Mohamed Kane · Albert Haque · Evangelos Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon
  • 2016 Poster: Variational Information Maximization for Feature Selection »
    Shuyang Gao · Greg Ver Steeg · Aram Galstyan
  • 2014 Poster: Discovering Structure in High-Dimensional Data Through Correlation Explanation »
    Greg Ver Steeg · Aram Galstyan
  • 2011 Poster: Comparative Analysis of Viterbi Training and Maximum Likelihood Estimation for HMMs »
    Armen Allahverdyan · Aram Galstyan