Timezone: »
Poster
Integrated Latent Heterogeneity and Invariance Learning in Kernel Space
Jiashuo Liu · Zheyuan Hu · Peng Cui · Bo Li · Zheyan Shen
The ability to generalize under distributional shifts is essential to reliable machine learning, while models optimized with empirical risk minimization usually fail on non-$i.i.d$ testing data. Recently, invariant learning methods for out-of-distribution (OOD) generalization propose to find causally invariant relationships with multi-environments. However, modern datasets are frequently multi-sourced without explicit source labels, rendering many invariant learning methods inapplicable. In this paper, we propose Kernelized Heterogeneous Risk Minimization (KerHRM) algorithm, which achieves both the latent heterogeneity exploration and invariant learning in kernel space, and then gives feedback to the original neural network by appointing invariant gradient direction. We theoretically justify our algorithm and empirically validate the effectiveness of our algorithm with extensive experiments.
Author Information
Jiashuo Liu (Tsinghua University)
Zheyuan Hu (Tsinghua University, Tsinghua University)
Peng Cui (Tsinghua University)
Bo Li (Tsinghua University)
Zheyan Shen (Tsinghua University)
More from the Same Authors
-
2022 Poster: ZIN: When and How to Learn Invariance Without Environment Partition? »
Yong Lin · Shengyu Zhu · Lu Tan · Peng Cui -
2022 Poster: Product Ranking for Revenue Maximization with Multiple Purchases »
Renzhe Xu · Xingxuan Zhang · Bo Li · Yafeng Zhang · Xiaolong Chen · Peng Cui -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yishi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: ZIN: When and How to Learn Invariance Without Environment Partition? »
Yong Lin · Shengyu Zhu · Lu Tan · Peng Cui -
2022 Spotlight: Lightning Talks 3A-2 »
shuwen yang · Xu Zhang · Delvin Ce Zhang · Lan-Zhe Guo · Renzhe Xu · Zhuoer Xu · Yao-Xiang Ding · Weihan Li · Xingxuan Zhang · Xi-Zhu Wu · Zhenyuan Yuan · Hady Lauw · Yu Qi · Yi-Ge Zhang · Zhihao Yang · Guanghui Zhu · Dong Li · Changhua Meng · Kun Zhou · Gang Pan · Zhi-Fan Wu · Bo Li · Minghui Zhu · Zhi-Hua Zhou · Yafeng Zhang · Yingxueff Zhang · shiwen cui · Jie-Jing Shao · Zhanguang Zhang · Zhenzhe Ying · Xiaolong Chen · Yu-Feng Li · Guojie Song · Peng Cui · Weiqiang Wang · Ming GU · Jianye Hao · Yihua Huang -
2022 Spotlight: Product Ranking for Revenue Maximization with Multiple Purchases »
Renzhe Xu · Xingxuan Zhang · Bo Li · Yafeng Zhang · Xiaolong Chen · Peng Cui -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: Distributionally Robust Optimization with Data Geometry »
Jiashuo Liu · Jiayun Wu · Bo Li · Peng Cui -
2022 Poster: Distributionally Robust Optimization with Data Geometry »
Jiashuo Liu · Jiayun Wu · Bo Li · Peng Cui -
2020 Poster: Counterfactual Prediction for Bundle Treatment »
Hao Zou · Peng Cui · Bo Li · Zheyan Shen · Jianxin Ma · Hongxia Yang · Yue He -
2019 Poster: Learning Disentangled Representations for Recommendation »
Jianxin Ma · Chang Zhou · Peng Cui · Hongxia Yang · Wenwu Zhu