Timezone: »
Missing data is an important problem in machine learning practice. Starting from the premise that imputation methods should preserve the causal structure of the data, we develop a regularization scheme that encourages any baseline imputation method to be causally consistent with the underlying data generating mechanism. Our proposal is a causally-aware imputation algorithm (MIRACLE). MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism, encouraging imputation to be consistent with the causal structure of the data. We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation over a variety of benchmark methods across all three missingness scenarios: at random, completely at random, and not at random.
Author Information
Trent Kyono (UCLA)
Yao Zhang (University of Cambridge)
Alexis Bellot (Columbia University)
Mihaela van der Schaar (University of Cambridge)
More from the Same Authors
-
2021 Spotlight: On Inductive Biases for Heterogeneous Treatment Effect Estimation »
Alicia Curth · Mihaela van der Schaar -
2021 Spotlight: Explaining Latent Representations with a Corpus of Examples »
Jonathan Crabbe · Zhaozhi Qian · Fergus Imrie · Mihaela van der Schaar -
2021 : Really Doing Great at Estimating CATE? A Critical Look at ML Benchmarking Practices in Treatment Effect Estimation »
Alicia Curth · David Svensson · Jim Weatherall · Mihaela van der Schaar -
2021 : The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation »
Alex Chan · Ioana Bica · Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar -
2023 Poster: Transportability for Bandits with Data from Different Environments »
Alexis Bellot · Alan Malek · Silvia Chiappa -
2022 Workshop: A causal view on dynamical systems »
Sören Becker · Alexis Bellot · Cecilia Casolo · Niki Kilbertus · Sara Magliacane · Yuyang (Bernie) Wang -
2021 Poster: Invariant Causal Imitation Learning for Generalizable Policies »
Ioana Bica · Daniel Jarrett · Mihaela van der Schaar -
2021 Poster: Explaining Latent Representations with a Corpus of Examples »
Jonathan Crabbe · Zhaozhi Qian · Fergus Imrie · Mihaela van der Schaar -
2021 Poster: Time-series Generation by Contrastive Imitation »
Daniel Jarrett · Ioana Bica · Mihaela van der Schaar -
2021 Poster: Closing the loop in medical decision support by understanding clinical decision-making: A case study on organ transplantation »
Yuchao Qin · Fergus Imrie · Alihan Hüyük · Daniel Jarrett · alexander gimson · Mihaela van der Schaar -
2021 Poster: DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks »
Boris van Breugel · Trent Kyono · Jeroen Berrevoets · Mihaela van der Schaar -
2021 Poster: Conformal Time-series Forecasting »
Kamile Stankeviciute · Ahmed Alaa · Mihaela van der Schaar -
2021 Poster: Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease Progression »
Zhaozhi Qian · William Zame · Lucas Fleuren · Paul Elbers · Mihaela van der Schaar -
2021 Poster: SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data »
Alicia Curth · Changhee Lee · Mihaela van der Schaar -
2021 Poster: On Inductive Biases for Heterogeneous Treatment Effect Estimation »
Alicia Curth · Mihaela van der Schaar -
2021 Poster: SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes »
Zhaozhi Qian · Yao Zhang · Ioana Bica · Angela Wood · Mihaela van der Schaar -
2021 Poster: Estimating Multi-cause Treatment Effects via Single-cause Perturbation »
Zhaozhi Qian · Alicia Curth · Mihaela van der Schaar -
2020 Poster: Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification »
Hyun-Suk Lee · Yao Zhang · William Zame · Cong Shen · Jang-Won Lee · Mihaela van der Schaar -
2020 Poster: Learning outside the Black-Box: The pursuit of interpretable models »
Jonathan Crabbe · Yao Zhang · William Zame · Mihaela van der Schaar -
2020 Poster: Gradient Regularized V-Learning for Dynamic Treatment Regimes »
Yao Zhang · Mihaela van der Schaar -
2020 Poster: CASTLE: Regularization via Auxiliary Causal Graph Discovery »
Trent Kyono · Yao Zhang · Mihaela van der Schaar -
2020 Poster: VIME: Extending the Success of Self- and Semi-supervised Learning to Tabular Domain »
Jinsung Yoon · Yao Zhang · James Jordon · Mihaela van der Schaar -
2019 : Poster Session I »
Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel -
2019 Poster: Time-series Generative Adversarial Networks »
Jinsung Yoon · Daniel Jarrett · Mihaela van der Schaar -
2019 Poster: Conditional Independence Testing using Generative Adversarial Networks »
Alexis Bellot · Mihaela van der Schaar -
2019 Spotlight: Conditional Independence Testing using Generative Adversarial Networks »
Alexis Bellot · Mihaela van der Schaar -
2018 Poster: Multitask Boosting for Survival Analysis with Competing Risks »
Alexis Bellot · Mihaela van der Schaar -
2016 Poster: Balancing Suspense and Surprise: Timely Decision Making with Endogenous Information Acquisition »
Ahmed Alaa · Mihaela van der Schaar -
2016 Poster: A Non-parametric Learning Method for Confidently Estimating Patient's Clinical State and Dynamics »
William Hoiles · Mihaela van der Schaar -
2014 Poster: Discovering, Learning and Exploiting Relevance »
Cem Tekin · Mihaela van der Schaar