Timezone: »
Real world applications such as economics and policy making often involve solving multi-agent games with two unique features: (1) The agents are inherently asymmetric and partitioned into leaders and followers; (2) The agents have different reward functions, thus the game is general-sum. The majority of existing results in this field focuses on either symmetric solution concepts (e.g. Nash equilibrium) or zero-sum games. It remains open how to learn the Stackelberg equilibrium---an asymmetric analog of the Nash equilibrium---in general-sum games efficiently from noisy samples. This paper initiates the theoretical study of sample-efficient learning of the Stackelberg equilibrium, in the bandit feedback setting where we only observe noisy samples of the reward. We consider three representative two-player general-sum games: bandit games, bandit-reinforcement learning (bandit-RL) games, and linear bandit games. In all these games, we identify a fundamental gap between the exact value of the Stackelberg equilibrium and its estimated version using finitely many noisy samples, which can not be closed information-theoretically regardless of the algorithm. We then establish sharp positive results on sample-efficient learning of Stackelberg equilibrium with value optimal up to the gap identified above, with matching lower bounds in the dependency on the gap, error tolerance, and the size of the action spaces. Overall, our results unveil unique challenges in learning Stackelberg equilibria under noisy bandit feedback, which we hope could shed light on future research on this topic.
Author Information
Yu Bai (Salesforce Research)
Chi Jin (University of California, Berkeley)
Huan Wang (Salesforce Research)
Huan Wang is an senior research scientist at Salesforce Research. His research interests include machine learning, big data analytics, computer vision and NLP. He used to be a research scientist at Microsoft AI Research, Yahoo’s New York Labs, and an adjunct professor at the engineering school of New York University. He graduated as a Ph.D in Computer Science at Yale University in 2013. Before that, he received an M.Phil. from The Chinese University of Hong Kong and a B.Eng. from Zhejiang University, both in information engineering.
Caiming Xiong (State Univerisity of New York at Buffalo)
More from the Same Authors
-
2021 Spotlight: Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms »
Chi Jin · Qinghua Liu · Sobhan Miryoosefi -
2021 Spotlight: Understanding the Under-Coverage Bias in Uncertainty Estimation »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2021 Spotlight: Align before Fuse: Vision and Language Representation Learning with Momentum Distillation »
Junnan Li · Ramprasaath Selvaraju · Akhilesh Gotmare · Shafiq Joty · Caiming Xiong · Steven Chu Hong Hoi -
2021 Spotlight: A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning »
Pan Zhou · Caiming Xiong · Xiaotong Yuan · Steven Chu Hong Hoi -
2023 Poster: What can a Single Attention Layer Learn? A Study Through the Random Features Lens »
Hengyu Fu · Tianyu Guo · Yu Bai · Song Mei -
2023 Poster: Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection »
Yu Bai · Fan Chen · Huan Wang · Caiming Xiong · Song Mei -
2023 Poster: Efficient RL with Impaired Observability: Learning to Act with Delayed and Missing State Observations »
Minshuo Chen · Yu Bai · H. Vincent Poor · Mengdi Wang -
2023 Oral: Transformers as Statisticians: Provable In-Context Learning with In-Context Algorithm Selection »
Yu Bai · Fan Chen · Huan Wang · Caiming Xiong · Song Mei -
2022 Poster: Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials »
Eshaan Nichani · Yu Bai · Jason Lee -
2022 Poster: Efficient Phi-Regret Minimization in Extensive-Form Games via Online Mirror Descent »
Yu Bai · Chi Jin · Song Mei · Ziang Song · Tiancheng Yu -
2022 Poster: Policy Optimization for Markov Games: Unified Framework and Faster Convergence »
Runyu Zhang · Qinghua Liu · Huan Wang · Caiming Xiong · Na Li · Yu Bai -
2022 Poster: Sample-Efficient Learning of Correlated Equilibria in Extensive-Form Games »
Ziang Song · Song Mei · Yu Bai -
2021 Poster: Align before Fuse: Vision and Language Representation Learning with Momentum Distillation »
Junnan Li · Ramprasaath Selvaraju · Akhilesh Gotmare · Shafiq Joty · Caiming Xiong · Steven Chu Hong Hoi -
2021 Poster: Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms »
Chi Jin · Qinghua Liu · Sobhan Miryoosefi -
2021 Poster: Evaluating State-of-the-Art Classification Models Against Bayes Optimality »
Ryan Theisen · Huan Wang · Lav Varshney · Caiming Xiong · Richard Socher -
2021 Poster: Understanding the Under-Coverage Bias in Uncertainty Estimation »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2021 Poster: A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning »
Pan Zhou · Caiming Xiong · Xiaotong Yuan · Steven Chu Hong Hoi -
2021 Poster: Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning »
Tengyang Xie · Nan Jiang · Huan Wang · Caiming Xiong · Yu Bai -
2021 Poster: Near-Optimal Offline Reinforcement Learning via Double Variance Reduction »
Ming Yin · Yu Bai · Yu-Xiang Wang -
2020 Poster: Towards Understanding Hierarchical Learning: Benefits of Neural Representations »
Minshuo Chen · Yu Bai · Jason Lee · Tuo Zhao · Huan Wang · Caiming Xiong · Richard Socher -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Provably Efficient Q-Learning with Low Switching Cost »
Yu Bai · Tengyang Xie · Nan Jiang · Yu-Xiang Wang -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2012 Poster: Dimensionality Dependent PAC-Bayes Margin Bound »
Chi Jin · Liwei Wang