Timezone: »
Author Information
Prateek Jain (Google Research)
John Rush (Google)
I come from a pure mathematics background, formerly a harmonic analyst and mathematical physicist. I transferred to machine learning on the software side after grad school, and joined Google in 2018, working on federated learning. I am a main author of TensorFlow Federated; ask me about it!
Adam Smith (Boston University)
Shuang Song (Google)
I am currently a 6th year PhD student in [UC San Diego](http://www.cs.ucsd.edu/). I am working with [Prof. Kamalika Chaudhuri](http://cseweb.ucsd.edu/~kamalika/) in Machine Learning and Differential Privacy. Before joining UCSD, I obtained my BSc degree in Mathematics and Computer Science from [The Hong Kong University of Science and Technology](http://www.ust.hk). I was an intern in the [Google Brain Team](https://research.google.com/teams/brain/) during Summer 2017.
Abhradeep Guha Thakurta (Google Research - Brain Team)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Differentially Private Model Personalization »
Fri. Dec 10th 12:30 -- 02:00 AM Room
More from the Same Authors
-
2021 Spotlight: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2021 Spotlight: Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 : Iterated Vector Fields and Conservatism, with Applications to Federated Learning »
Zachary Charles · John Rush -
2022 : MET: Masked Encoding for Tabular Data »
Kushal Majmundar · Sachin Goyal · Praneeth Netrapalli · Prateek Jain -
2022 : Learning an Invertible Output Mapping Can Mitigate Simplicity Bias in Neural Networks »
Sravanti Addepalli · Anshul Nasery · Venkatesh Babu R · Praneeth Netrapalli · Prateek Jain -
2022 Poster: When Does Differentially Private Learning Not Suffer in High Dimensions? »
Xuechen Li · Daogao Liu · Tatsunori Hashimoto · Huseyin A. Inan · Janardhan Kulkarni · Yin-Tat Lee · Abhradeep Guha Thakurta -
2022 Poster: Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams »
Sergey Denisov · H. Brendan McMahan · John Rush · Adam Smith · Abhradeep Guha Thakurta -
2022 Poster: DP-PCA: Statistically Optimal and Differentially Private PCA »
Xiyang Liu · Weihao Kong · Prateek Jain · Sewoong Oh -
2022 Poster: S3GC: Scalable Self-Supervised Graph Clustering »
Fnu Devvrit · Aditya Sinha · Inderjit Dhillon · Prateek Jain -
2022 Poster: Reproducibility in Optimization: Theoretical Framework and Limits »
Kwangjun Ahn · Prateek Jain · Ziwei Ji · Satyen Kale · Praneeth Netrapalli · Gil I Shamir -
2022 Poster: Matryoshka Representation Learning »
Aditya Kusupati · Gantavya Bhatt · Aniket Rege · Matthew Wallingford · Aditya Sinha · Vivek Ramanujan · William Howard-Snyder · Kaifeng Chen · Sham Kakade · Prateek Jain · Ali Farhadi -
2021 Poster: Differentially Private Sampling from Distributions »
Sofya Raskhodnikova · Satchit Sivakumar · Adam Smith · Marika Swanberg -
2021 Poster: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2021 Poster: Streaming Linear System Identification with Reverse Experience Replay »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Poster: Federated Reconstruction: Partially Local Federated Learning »
Karan Singhal · Hakim Sidahmed · Zachary Garrett · Shanshan Wu · John Rush · Sushant Prakash -
2021 Poster: LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes »
Aditya Kusupati · Matthew Wallingford · Vivek Ramanujan · Raghav Somani · Jae Sung Park · Krishna Pillutla · Prateek Jain · Sham Kakade · Ali Farhadi -
2021 Poster: Do Input Gradients Highlight Discriminative Features? »
Harshay Shah · Prateek Jain · Praneeth Netrapalli -
2021 Poster: Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems »
Suhas Kowshik · Dheeraj Nagaraj · Prateek Jain · Praneeth Netrapalli -
2021 Poster: A Separation Result Between Data-oblivious and Data-aware Poisoning Attacks »
Samuel Deng · Sanjam Garg · Somesh Jha · Saeed Mahloujifar · Mohammad Mahmoody · Abhradeep Guha Thakurta -
2021 Poster: Statistically and Computationally Efficient Linear Meta-representation Learning »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Poster: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Spotlight: Projection Efficient Subgradient Method and Optimal Nonsmooth Frank-Wolfe Method »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2020 Poster: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2020 Spotlight: RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference »
Oindrila Saha · Aditya Kusupati · Harsha Vardhan Simhadri · Manik Varma · Prateek Jain -
2020 Poster: The Pitfalls of Simplicity Bias in Neural Networks »
Harshay Shah · Kaustav Tamuly · Aditi Raghunathan · Prateek Jain · Praneeth Netrapalli -
2020 Poster: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2020 Spotlight: Least Squares Regression with Markovian Data: Fundamental Limits and Algorithms »
Dheeraj Nagaraj · Xian Wu · Guy Bresler · Prateek Jain · Praneeth Netrapalli -
2020 Poster: Privacy Amplification via Random Check-Ins »
Borja Balle · Peter Kairouz · Brendan McMahan · Om Thakkar · Abhradeep Guha Thakurta -
2020 Poster: The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space »
Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2018 : Invited talk 4: Models for private data analysis of distributed data »
Adam Smith -
2018 Poster: Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization »
Blake Woodworth · Jialei Wang · Adam Smith · Brendan McMahan · Nati Srebro -
2018 Spotlight: Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization »
Blake Woodworth · Jialei Wang · Adam Smith · Brendan McMahan · Nati Srebro -
2017 Poster: Renyi Differential Privacy Mechanisms for Posterior Sampling »
Joseph Geumlek · Shuang Song · Kamalika Chaudhuri -
2014 Poster: The Large Margin Mechanism for Differentially Private Maximization »
Kamalika Chaudhuri · Daniel Hsu · Shuang Song