Timezone: »

 
Poster
Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL
Charles Packer · Pieter Abbeel · Joseph Gonzalez

Fri Dec 10 08:30 AM -- 10:00 AM (PST) @

Meta-reinforcement learning (meta-RL) has proven to be a successful framework for leveraging experience from prior tasks to rapidly learn new related tasks, however, current meta-RL approaches struggle to learn in sparse reward environments. Although existing meta-RL algorithms can learn strategies for adapting to new sparse reward tasks, the actual adaptation strategies are learned using hand-shaped reward functions, or require simple environments where random exploration is sufficient to encounter sparse reward. In this paper we present a formulation of hindsight relabelling for meta-RL, which relabels experience during meta-training to enable learning to learn entirely using sparse reward. We demonstrate the effectiveness of our approach on a suite of challenging sparse reward environments that previously required dense reward during meta-training to solve. Our approach solves these environments using the true sparse reward function, with performance comparable to training with a proxy dense reward function.

Author Information

Charles Packer (University of California Berkeley)
Pieter Abbeel (UC Berkeley & Covariant)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

Joseph Gonzalez (UC Berkeley)

More from the Same Authors