Timezone: »
An important goal of AutoML is to automate-away the design of neural networks on new tasks in under-explored domains. Motivated by this goal, we study the problem of enabling users to discover the right neural operations given data from their specific domain. We introduce a search space of operations called XD-Operations that mimic the inductive bias of standard multi-channel convolutions while being much more expressive: we prove that it includes many named operations across multiple application areas. Starting with any standard backbone such as ResNet, we show how to transform it into a search space over XD-operations and how to traverse the space using a simple weight sharing scheme. On a diverse set of tasks—solving PDEs, distance prediction for protein folding, and music modeling—our approach consistently yields models with lower error than baseline networks and often even lower error than expert-designed domain-specific approaches.
Author Information
Nicholas Roberts (University of Wisconsin-Madison)
Mikhail Khodak (CMU)
Tri Dao (Stanford University)
Liam Li (Carnegie Mellon University)
Christopher Ré (Stanford)
Ameet Talwalkar (CMU)
More from the Same Authors
-
2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré -
2021 : SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation »
Arjun Desai · Andrew Schmidt · Elka Rubin · Christopher Sandino · Marianne Black · Valentina Mazzoli · Kathryn Stevens · Robert Boutin · Christopher Ré · Garry Gold · Brian Hargreaves · Akshay Chaudhari -
2021 : Simulated User Studies for Explanation Evaluation »
Valerie Chen · Gregory Plumb · Nicholay Topin · Ameet S Talwalkar -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2021 : Combining Recurrent, Convolutional, and Continuous-Time Models with Structured Learnable Linear State-Space Layers »
Isys Johnson · Albert Gu · Karan Goel · Khaled Saab · Tri Dao · Atri Rudra · Christopher Ré -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet S Talwalkar · Hoda Heidari · Steven Wu -
2022 : AutoML for Climate Change: A Call to Action »
Renbo Tu · Nicholas Roberts · Vishak Prasad C · Sibasis Nayak · Paarth Jain · Frederic Sala · Ganesh Ramakrishnan · Ameet Talwalkar · Willie Neiswanger · Colin White -
2022 Competition: AutoML Decathlon: Diverse Tasks, Modern Methods, and Efficiency at Scale »
Samuel Guo · Cong Xu · Nicholas Roberts · Misha Khodak · Junhong Shen · Evan Sparks · Ameet Talwalkar · Yuriy Nevmyvaka · Frederic Sala · Anderson Schneider -
2022 Spotlight: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 Poster: On the Parameterization and Initialization of Diagonal State Space Models »
Albert Gu · Karan Goel · Ankit Gupta · Christopher Ré -
2022 Poster: Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data »
Armin Thomas · Christopher Ré · Russell Poldrack -
2022 Poster: Use-Case-Grounded Simulations for Explanation Evaluation »
Valerie Chen · Nari Johnson · Nicholay Topin · Gregory Plumb · Ameet Talwalkar -
2022 Poster: HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions »
Lingjiao Chen · Zhihua Jin · Evan Sabri Eyuboglu · Christopher Ré · Matei Zaharia · James Zou -
2022 Poster: Provably tuning the ElasticNet across instances »
Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar -
2022 Poster: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Dan Fu · Stefano Ermon · Atri Rudra · Christopher Ré -
2022 Poster: Contrastive Adapters for Foundation Model Group Robustness »
Michael Zhang · Christopher Ré -
2022 Poster: Decentralized Training of Foundation Models in Heterogeneous Environments »
Binhang Yuan · Yongjun He · Jared Davis · Tianyi Zhang · Tri Dao · Beidi Chen · Percy Liang · Christopher Ré · Ce Zhang -
2022 Poster: Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Ré · Stefano Ermon -
2022 Poster: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2022 Poster: S4ND: Modeling Images and Videos as Multidimensional Signals with State Spaces »
Eric Nguyen · Karan Goel · Albert Gu · Gordon Downs · Preey Shah · Tri Dao · Stephen Baccus · Christopher Ré -
2022 Poster: Fine-tuning Language Models over Slow Networks using Activation Quantization with Guarantees »
Jue WANG · Binhang Yuan · Luka Rimanic · Yongjun He · Tri Dao · Beidi Chen · Christopher Ré · Ce Zhang -
2022 Poster: Efficient Architecture Search for Diverse Tasks »
Junhong Shen · Misha Khodak · Ameet Talwalkar -
2022 Poster: Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2022 Poster: NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks »
Renbo Tu · Nicholas Roberts · Misha Khodak · Junhong Shen · Frederic Sala · Ameet Talwalkar -
2021 : [S9] Simulated User Studies for Explanation Evaluation »
Valerie Chen · Gregory Plumb · Nicholay Topin · Ameet S Talwalkar -
2021 : Bayesian Persuasion for Algorithmic Recourse »
Keegan Harris · Valerie Chen · Joon Sik Kim · Ameet Talwalkar · Hoda Heidari · Steven Wu -
2021 Poster: Scatterbrain: Unifying Sparse and Low-rank Attention »
Beidi Chen · Tri Dao · Eric Winsor · Zhao Song · Atri Rudra · Christopher Ré -
2021 Poster: Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers »
Albert Gu · Isys Johnson · Karan Goel · Khaled Saab · Tri Dao · Atri Rudra · Christopher Ré -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar -
2020 Workshop: International Workshop on Scalability, Privacy, and Security in Federated Learning (SpicyFL 2020) »
Xiaolin Andy Li · Dejing Dou · Ameet Talwalkar · Hongyu Li · Jianzong Wang · Yanzhi Wang -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher Ré · Will Hamilton -
2020 Poster: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Poster: Regularizing Black-box Models for Improved Interpretability »
Gregory Plumb · Maruan Al-Shedivat · Ángel Alexander Cabrera · Adam Perer · Eric Xing · Ameet Talwalkar -
2020 Spotlight: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Oral: Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent »
Benjamin Recht · Christopher Ré · Stephen Wright · Feng Niu -
2020 Poster: From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering »
Ines Chami · Albert Gu · Vaggos Chatziafratis · Christopher Ré -
2019 : TBD »
Ameet Talwalkar -
2019 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Christian Muise · Kartik Talamadupula · Sameer Singh · Christopher Ré -
2019 Poster: On the Downstream Performance of Compressed Word Embeddings »
Avner May · Jian Zhang · Tri Dao · Christopher Ré -
2019 Spotlight: On the Downstream Performance of Compressed Word Embeddings »
Avner May · Jian Zhang · Tri Dao · Christopher Ré -
2019 Poster: Multi-Resolution Weak Supervision for Sequential Data »
Paroma Varma · Frederic Sala · Shiori Sagawa · Jason A Fries · Dan Fu · Saelig Khattar · Ashwini Ramamoorthy · Ke Xiao · Kayvon Fatahalian · James Priest · Christopher Ré -
2019 Poster: Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices »
Vincent Chen · Sen Wu · Alexander Ratner · Jen Weng · Christopher Ré -
2019 Poster: Hyperbolic Graph Convolutional Neural Networks »
Ines Chami · Zhitao Ying · Christopher Ré · Jure Leskovec -
2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar -
2018 Workshop: Relational Representation Learning »
Aditya Grover · Paroma Varma · Frederic Sala · Christopher Ré · Jennifer Neville · Stefano Ermon · Steven Holtzen -
2018 : Posters (all accepted papers) + Break »
Jianyu Wang · Denis Gudovskiy · Ziheng Jiang · Michael Kaufmann · Andreea Anghel · James Bradbury · Nikolas Ioannou · Nitin Agrawal · Emma Tosch · Gyeongin Yu · Keno Fischer · Jarrett Revels · Giuseppe Siracusano · Yaoqing Yang · Jeff Johnson · Yang You · Hector Yuen · Chris Ying · Honglei Liu · Nikoli Dryden · Xiangxi Mo · Yangzihao Wang · Amit Juneja · Micah Smith · Qian Yu · pramod gupta · Deepak Narayanan · Keshav Santhanam · Tim Capes · Abdul Dakkak · Norman Mu · Ke Deng · Liam Li · Joao Carreira · Luis Remis · Deepti Raghavan · Una-May O'Reilly · Amanpreet Singh · Mahmoud (Mido) Assran · Eugene Wu · Eytan Bakshy · Jinliang Wei · Michael Innes · Viral Shah · Haibin Lin · Conrad Sanderson · Ryan Curtin · Marcus Edel -
2018 Poster: Learning from discriminative feature feedback »
Sanjoy Dasgupta · Sivan Sabato · Nicholas Roberts · Akansha Dey -
2018 Poster: Model Agnostic Supervised Local Explanations »
Gregory Plumb · Denali Molitor · Ameet Talwalkar -
2018 Poster: Learning Compressed Transforms with Low Displacement Rank »
Anna Thomas · Albert Gu · Tri Dao · Atri Rudra · Christopher Ré -
2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré -
2017 Workshop: ML Systems Workshop @ NIPS 2017 »
Aparna Lakshmiratan · Sarah Bird · Siddhartha Sen · Christopher Ré · Li Erran Li · Joseph Gonzalez · Daniel Crankshaw -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: Learning to Compose Domain-Specific Transformations for Data Augmentation »
Alexander Ratner · Henry Ehrenberg · Zeshan Hussain · Jared Dunnmon · Christopher Ré -
2017 Poster: Gaussian Quadrature for Kernel Features »
Tri Dao · Christopher M De Sa · Christopher Ré -
2017 Spotlight: Gaussian Quadrature for Kernel Features »
Tri Dao · Christopher M De Sa · Christopher Ré -
2017 Poster: Inferring Generative Model Structure with Static Analysis »
Paroma Varma · Bryan He · Payal Bajaj · Nishith Khandwala · Imon Banerjee · Daniel Rubin · Christopher Ré -
2017 Poster: Variable Importance Using Decision Trees »
Jalil Kazemitabar · Arash Amini · Adam Bloniarz · Ameet S Talwalkar -
2017 Poster: Federated Multi-Task Learning »
Virginia Smith · Chao-Kai Chiang · Maziar Sanjabi · Ameet S Talwalkar -
2016 : Invited Talk: Paleo: A Performance Model for Deep Neural Networks (Ameet Talwalkar, UCLA) »
Ameet S Talwalkar -
2016 : Invited Talk: You've been using asynchrony wrong your whole life! (Chris Re, Stanford) »
Christopher Ré -
2016 Poster: Cyclades: Conflict-free Asynchronous Machine Learning »
Xinghao Pan · Maximilian Lam · Stephen Tu · Dimitris Papailiopoulos · Ce Zhang · Michael Jordan · Kannan Ramchandran · Christopher Ré · Benjamin Recht -
2016 Poster: Sub-sampled Newton Methods with Non-uniform Sampling »
Peng Xu · Jiyan Yang · Farbod Roosta-Khorasani · Christopher Ré · Michael Mahoney -
2016 Poster: Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale »
Firas Abuzaid · Joseph K Bradley · Feynman Liang · Andrew Feng · Lee Yang · Matei Zaharia · Ameet S Talwalkar -
2015 Poster: Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care »
Sorathan Chaturapruek · John Duchi · Christopher Ré -
2015 Poster: Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré -
2015 Spotlight: Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré -
2015 Poster: Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré -
2014 Workshop: 4th Workshop on Automated Knowledge Base Construction (AKBC) »
Sameer Singh · Fabian M Suchanek · Sebastian Riedel · Partha Pratim Talukdar · Kevin Murphy · Christopher Ré · William Cohen · Tom Mitchell · Andrew McCallum · Jason E Weston · Ramanathan Guha · Boyan Onyshkevych · Hoifung Poon · Oren Etzioni · Ari Kobren · Arvind Neelakantan · Peter Clark -
2014 Workshop: Distributed Machine Learning and Matrix Computations »
Reza Zadeh · Ion Stoica · Ameet S Talwalkar -
2014 Poster: Parallel Feature Selection Inspired by Group Testing »
Yingbo Zhou · Utkarsh Porwal · Ce Zhang · Hung Q Ngo · XuanLong Nguyen · Christopher Ré · Venu Govindaraju -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher Ré -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski -
2011 Poster: Divide-and-Conquer Matrix Factorization »
Lester W Mackey · Ameet S Talwalkar · Michael Jordan -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2009 Poster: Ensemble Nystrom Method »
Sanjiv Kumar · Mehryar Mohri · Ameet S Talwalkar