Timezone: »
Domain adaptive semantic segmentation aims to transfer knowledge learned from labeled source domain to unlabeled target domain. To narrow down the domain gap and ease adaptation difficulty, some recent methods translate source images to target-like images (latent domains), which are used as supplement or substitute to the original source data. Nevertheless, these methods neglect to explicitly model the relationship of knowledge transferring across different domains. Alternatively, in this work we break through the standard “source-target” one pair adaptation framework and construct multiple adaptation pairs (e.g. “source-latent” and “latent-target”). The purpose is to use the meta-knowledge (how to adapt) learned from one pair as guidance to assist the adaptation of another pair under a meta-learning framework. Furthermore, we extend our method to a more practical setting of open compound domain adaptation (a.k.a multiple-target domain adaptation), where the target is a compound of multiple domains without domain labels. In this setting, we embed an additional pair of “latent-latent” to reduce the domain gap between the source and different latent domains, allowing the model to adapt well on multiple target domains simultaneously. When evaluated on standard benchmarks, our method is superior to the state-of-the-art methods in both the single target and multiple-target domain adaptation settings.
Author Information
Yunan Liu (Nanjing University of Science and Technology)
Shanshan Zhang (Nanjing University of Science and Technology)
Yang Li (Nanjing University of Science and Technology)
Jian Yang (Nanjing University of Science and Technology)
More from the Same Authors
-
2021 Spotlight: A$^2$-Net: Learning Attribute-Aware Hash Codes for Large-Scale Fine-Grained Image Retrieval »
Xiu-Shen Wei · Yang Shen · Xuhao Sun · Han-Jia Ye · Jian Yang -
2022 Poster: Learning Superpoint Graph Cut for 3D Instance Segmentation »
Le Hui · Linghua Tang · Yaqi Shen · Jin Xie · Jian Yang -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · WEICONG LIANG · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: RecursiveMix: Mixed Learning with History »
Lingfeng Yang · Xiang Li · Borui Zhao · Renjie Song · Jian Yang -
2022 Spotlight: Learning Superpoint Graph Cut for 3D Instance Segmentation »
Le Hui · Linghua Tang · Yaqi Shen · Jin Xie · Jian Yang -
2022 Poster: RecursiveMix: Mixed Learning with History »
Lingfeng Yang · Xiang Li · Borui Zhao · Renjie Song · Jian Yang -
2022 Poster: Learning Contrastive Embedding in Low-Dimensional Space »
Shuo Chen · Chen Gong · Jun Li · Jian Yang · Gang Niu · Masashi Sugiyama -
2021 Poster: 3D Siamese Voxel-to-BEV Tracker for Sparse Point Clouds »
Le Hui · Lingpeng Wang · Mingmei Cheng · Jin Xie · Jian Yang -
2021 Poster: A$^2$-Net: Learning Attribute-Aware Hash Codes for Large-Scale Fine-Grained Image Retrieval »
Xiu-Shen Wei · Yang Shen · Xuhao Sun · Han-Jia Ye · Jian Yang -
2020 Poster: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection »
Xiang Li · Wenhai Wang · Lijun Wu · Shuo Chen · Xiaolin Hu · Jun Li · Jinhui Tang · Jian Yang -
2019 Poster: Curvilinear Distance Metric Learning »
Shuo Chen · Lei Luo · Jian Yang · Chen Gong · Jun Li · Heng Huang