`

Timezone: »

 
Poster
You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership
Xuxi Chen · Tianlong Chen · Zhenyu Zhang · Zhangyang Wang

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @ None #None
Despite tremendous success in many application scenarios, the training and inference costs of using deep learning are also rapidly increasing over time. The lottery ticket hypothesis (LTH) emerges as a promising framework to leverage a special sparse subnetwork (i.e., $\textit{winning ticket}$) instead of a full model for both training and inference, that can lower both costs without sacrificing the performance. The main resource bottleneck of LTH is however the extraordinary cost to find the sparse mask of the winning ticket. That makes the found winning ticket become a valuable asset to the owners, highlighting the necessity of protecting its copyright. Our setting adds a new dimension to the recently soaring interest in protecting against the intellectual property (IP) infringement of deep models and verifying their ownerships, since they take owners' massive/unique resources to develop or train. While existing methods explored encrypted weights or predictions, we investigate a unique way to leverage sparse topological information to perform $\textit{lottery verification}$, by developing several graph-based signatures that can be embedded as credentials. By further combining trigger set-based methods, our proposal can work in both white-box and black-box verification scenarios. Through extensive experiments, we demonstrate the effectiveness of lottery verification in diverse models (ResNet-20, ResNet-18, ResNet-50) on CIFAR-10 and CIFAR-100. Specifically, our verification is shown to be robust to removal attacks such as model fine-tuning and pruning, as well as several ambiguity attacks. Our codes are available at https://github.com/VITA-Group/NO-stealing-LTH.

Author Information

Xuxi Chen (UT Austin)
Tianlong Chen (Unversity of Texas at Austin)
Zhenyu Zhang (University of Science and Technology of China)
Zhangyang Wang (UT Austin)

More from the Same Authors