Timezone: »
Spotlight
A$^2$-Net: Learning Attribute-Aware Hash Codes for Large-Scale Fine-Grained Image Retrieval
Xiu-Shen Wei · Yang Shen · Xuhao Sun · Han-Jia Ye · Jian Yang
@
Our work focuses on tackling large-scale fine-grained image retrieval as ranking the images depicting the concept of interests (i.e., the same sub-category labels) highest based on the fine-grained details in the query. It is desirable to alleviate the challenges of both fine-grained nature of small inter-class variations with large intra-class variations and explosive growth of fine-grained data for such a practical task. In this paper, we propose an Attribute-Aware hashing Network (A$^2$-Net) for generating attribute-aware hash codes to not only make the retrieval process efficient, but also establish explicit correspondences between hash codes and visual attributes. Specifically, based on the captured visual representations by attention, we develop an encoder-decoder structure network of a reconstruction task to unsupervisedly distill high-level attribute-specific vectors from the appearance-specific visual representations without attribute annotations. A$^2$-Net is also equipped with a feature decorrelation constraint upon these attribute vectors to enhance their representation abilities. Finally, the required hash codes are generated by the attribute vectors driven by preserving original similarities. Qualitative experiments on five benchmark fine-grained datasets show our superiority over competing methods. More importantly, quantitative results demonstrate the obtained hash codes can strongly correspond to certain kinds of crucial properties of fine-grained objects.
Author Information
Xiu-Shen Wei (Nanjing University of Science and Technology)
Yang Shen (Nanjing university of science and technology)
Xuhao Sun (NJUST)
Han-Jia Ye (Nanjing University)
Jian Yang (Nanjing University of Science and Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: A$^2$-Net: Learning Attribute-Aware Hash Codes for Large-Scale Fine-Grained Image Retrieval »
Thu. Dec 9th 08:30 -- 10:00 AM Room
More from the Same Authors
-
2022 Poster: Learning Superpoint Graph Cut for 3D Instance Segmentation »
Le Hui · Linghua Tang · Yaqi Shen · Jin Xie · Jian Yang -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Lightning Talks 6B-3 »
Lingfeng Yang · Yao Lai · Zizheng Pan · Zhenyu Wang · Weicong Liang · Chuanyang Zheng · Jian-Wei Zhang · Peng Jin · Jing Liu · Xiuying Wei · Yao Mu · Xiang Li · YUHUI YUAN · Zizheng Pan · Yifan Sun · Yunchen Zhang · Jianfei Cai · Hao Luo · zheyang li · Jinfa Huang · Haoyu He · Yi Yang · Ping Luo · Fenglin Liu · Henghui Ding · Borui Zhao · Xiangguo Zhang · Kai Zhang · Pichao WANG · Bohan Zhuang · Wei Chen · Ruihao Gong · Zhi Yang · Xian Wu · Feng Ding · Jianfei Cai · Xiao Luo · Renjie Song · Weihong Lin · Jian Yang · Wenming Tan · Bohan Zhuang · Shanghang Zhang · Shen Ge · Fan Wang · Qi Zhang · Guoli Song · Jun Xiao · Hao Li · Ding Jia · David Clifton · Ye Ren · Fengwei Yu · Zheng Zhang · Jie Chen · Shiliang Pu · Xianglong Liu · Chao Zhang · Han Hu -
2022 Spotlight: An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning »
Xiu-Shen Wei · H.-Y. Xu · Faen Zhang · Yuxin Peng · Wei Zhou -
2022 Spotlight: RecursiveMix: Mixed Learning with History »
Lingfeng Yang · Xiang Li · Borui Zhao · Renjie Song · Jian Yang -
2022 Spotlight: Learning Superpoint Graph Cut for 3D Instance Segmentation »
Le Hui · Linghua Tang · Yaqi Shen · Jin Xie · Jian Yang -
2022 Poster: An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning »
Xiu-Shen Wei · H.-Y. Xu · Faen Zhang · Yuxin Peng · Wei Zhou -
2022 Poster: RecursiveMix: Mixed Learning with History »
Lingfeng Yang · Xiang Li · Borui Zhao · Renjie Song · Jian Yang -
2022 Poster: Learning Contrastive Embedding in Low-Dimensional Space »
Shuo Chen · Chen Gong · Jun Li · Jian Yang · Gang Niu · Masashi Sugiyama -
2021 Poster: 3D Siamese Voxel-to-BEV Tracker for Sparse Point Clouds »
Le Hui · Lingpeng Wang · Mingmei Cheng · Jin Xie · Jian Yang -
2021 Poster: Towards Enabling Meta-Learning from Target Models »
Su Lu · Han-Jia Ye · Le Gan · De-Chuan Zhan -
2021 Poster: Learning to Adapt via Latent Domains for Adaptive Semantic Segmentation »
Yunan Liu · Shanshan Zhang · Yang Li · Jian Yang -
2020 Poster: Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection »
Xiang Li · Wenhai Wang · Lijun Wu · Shuo Chen · Xiaolin Hu · Jun Li · Jinhui Tang · Jian Yang -
2019 Poster: Curvilinear Distance Metric Learning »
Shuo Chen · Lei Luo · Jian Yang · Chen Gong · Jun Li · Heng Huang -
2016 Poster: What Makes Objects Similar: A Unified Multi-Metric Learning Approach »
Han-Jia Ye · De-Chuan Zhan · Xue-Min Si · Yuan Jiang · Zhi-Hua Zhou