Timezone: »
This paper leverages machine-learned predictions to design competitive algorithms for online conversion problems with the goal of improving the competitive ratio when predictions are accurate (i.e., consistency), while also guaranteeing a worst-case competitive ratio regardless of the prediction quality (i.e., robustness). We unify the algorithmic design of both integral and fractional conversion problems, which are also known as the 1-max-search and one-way trading problems, into a class of online threshold-based algorithms (OTA). By incorporating predictions into design of OTA, we achieve the Pareto-optimal trade-off of consistency and robustness, i.e., no online algorithm can achieve a better consistency guarantee given for a robustness guarantee. We demonstrate the performance of OTA using numerical experiments on Bitcoin conversion.
Author Information
Bo Sun (The Hong Kong University of Science and Technology)
Russell Lee (University of Massachusetts Amherst)
Mohammad Hajiesmaili (UMass Amherst)
Adam Wierman (Caltech)
Danny Tsang (The Hong Kong University of Science and Technology)
More from the Same Authors
-
2021 Spotlight: Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems »
Yiheng Lin · Yang Hu · Guanya Shi · Haoyuan Sun · Guannan Qu · Adam Wierman -
2022 : Robustifying machine-learned algorithms for efficient grid operation »
Nicolas Christianson · Christopher Yeh · Tongxin Li · Mahdi Torabi Rad · Azarang Golmohammadi · Adam Wierman -
2022 : Stability Constrained Reinforcement Learning for Real-Time Voltage Control »
Jie Feng · Yuanyuan Shi · Guannan Qu · Steven Low · Anima Anandkumar · Adam Wierman -
2022 : SustainGym: A Benchmark Suite of Reinforcement Learning for Sustainability Applications »
Christopher Yeh · Victor Li · Rajeev Datta · Yisong Yue · Adam Wierman -
2022 Poster: On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory »
Yang Hu · Adam Wierman · Guannan Qu -
2022 Poster: Bounded-Regret MPC via Perturbation Analysis: Prediction Error, Constraints, and Nonlinearity »
Yiheng Lin · Yang Hu · Guannan Qu · Tongxin Li · Adam Wierman -
2021 Poster: Multi-Agent Reinforcement Learning in Stochastic Networked Systems »
Yiheng Lin · Guannan Qu · Longbo Huang · Adam Wierman -
2021 Poster: Cooperative Stochastic Bandits with Asynchronous Agents and Constrained Feedback »
Lin Yang · Yu-Zhen Janice Chen · Stephen Pasteris · Mohammad Hajiesmaili · John C. S. Lui · Don Towsley -
2021 Poster: Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems »
Yiheng Lin · Yang Hu · Guanya Shi · Haoyuan Sun · Guannan Qu · Adam Wierman -
2020 Poster: Online Optimization with Memory and Competitive Control »
Guanya Shi · Yiheng Lin · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2020 Poster: Adversarial Bandits with Corruptions »
Lin Yang · Mohammad Hajiesmaili · Mohammad Sadegh Talebi · John C. S. Lui · Wing Shing Wong -
2020 Poster: Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward »
Guannan Qu · Yiheng Lin · Adam Wierman · Na Li -
2020 Poster: The Power of Predictions in Online Control »
Chenkai Yu · Guanya Shi · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2019 Poster: Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization »
Gautam Goel · Yiheng Lin · Haoyuan Sun · Adam Wierman -
2019 Spotlight: Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization »
Gautam Goel · Yiheng Lin · Haoyuan Sun · Adam Wierman