Timezone: »
In the problems of image retrieval and few-shot classification, the mainstream approaches focus on learning a better feature representation. However, directly tackling the distance or similarity measure between images could also be efficient. To this end, we revisit the idea of re-ranking the top-k retrieved images in the context of image retrieval (e.g., the k-reciprocal nearest neighbors) and generalize this idea to transductive few-shot learning. We propose to meta-learn the re-ranking updates such that the similarity graph converges towards the target similarity graph induced by the image labels. Specifically, the re-ranking module takes as input an initial similarity graph between the query image and the contextual images using a pre-trained feature extractor, and predicts an improved similarity graph by leveraging the structure among the involved images. We show that our re-ranking approach can be applied to unseen images and can further boost existing approaches for both image retrieval and few-shot learning problems. Our approach operates either independently or in conjunction with classical re-ranking approaches, yielding clear and consistent improvements on image retrieval (CUB, Cars, SOP, rOxford5K and rParis6K) and transductive few-shot classification (Mini-ImageNet, tiered-ImageNet and CIFAR-FS) benchmarks. Our code is available at https://imagine.enpc.fr/~shenx/SSR/.
Author Information
Xi SHEN (Ecole des Ponts ParisTech)
Yang Xiao (ENPC)
Shell Xu Hu (Samsung AI Center Cambridge)
Othman Sbai (Ecole des Ponts)
Mathieu Aubry (École des ponts ParisTech)
More from the Same Authors
-
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2020 Poster: Deep Transformation-Invariant Clustering »
Tom Monnier · Thibault Groueix · Mathieu Aubry -
2020 Oral: Deep Transformation-Invariant Clustering »
Tom Monnier · Thibault Groueix · Mathieu Aubry -
2019 : Coffee/Poster session 2 »
Xingyou Song · Puneet Mangla · David Salinas · Zhenxun Zhuang · Leo Feng · Shell Xu Hu · Raul Puri · Wesley Maddox · Aniruddh Raghu · Prudencio Tossou · Mingzhang Yin · Ishita Dasgupta · Kangwook Lee · Ferran Alet · Zhen Xu · Jörg Franke · James Harrison · Jonathan Warrell · Guneet Dhillon · Arber Zela · Xin Qiu · Julien Niklas Siems · Russell Mendonca · Louis Schlessinger · Jeffrey Li · Georgiana Manolache · Debojyoti Dutta · Lucas Glass · Abhishek Singh · Gregor Koehler -
2019 Poster: Learning elementary structures for 3D shape generation and matching »
Theo Deprelle · Thibault Groueix · Matthew Fisher · Vladimir Kim · Bryan Russell · Mathieu Aubry