Timezone: »
Tensor network methods have been a key ingredient of advances in condensed matter physics and have recently sparked interest in the machine learning community for their ability to compactly represent very high-dimensional objects. Tensor network methods can for example be used to efficiently learn linear models in exponentially large feature spaces [Stoudenmire and Schwab, 2016]. In this work, we derive upper and lower bounds on the VC dimension and pseudo-dimension of a large class of tensor network models for classification, regression and completion. Our upper bounds hold for linear models parameterized by arbitrary tensor network structures, and we derive lower bounds for common tensor decomposition models~(CP, Tensor Train, Tensor Ring and Tucker) showing the tightness of our general upper bound. These results are used to derive a generalization bound which can be applied to classification with low rank matrices as well as linear classifiers based on any of the commonly used tensor decomposition models. As a corollary of our results, we obtain a bound on the VC dimension of the matrix product state classifier introduced in [Stoudenmire and Schwab, 2016] as a function of the so-called bond dimension~(i.e. tensor train rank), which answers an open problem listed by Cirac, Garre-Rubio and Pérez-García in [Cirac et al., 2019].
Author Information
Behnoush Khavari (University of Montreal)
Guillaume Rabusseau (Mila - Université de Montréal)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Lower and Upper Bounds on the Pseudo-Dimension of Tensor Network Models »
Thu. Dec 9th 12:30 -- 02:00 AM Room
More from the Same Authors
-
2021 : Few Shot Image Generation via Implicit Autoencoding of Support Sets »
Shenyang Huang · Kuan-Chieh Wang · Guillaume Rabusseau · Alireza Makhzani -
2020 : Invited Talk 9 Q&A by Guillaume »
Guillaume Rabusseau -
2020 : Invited Talk 9: Tensor Network Models for Structured Data »
Guillaume Rabusseau -
2020 : Panel Discussion 1: Theoretical, Algorithmic and Physical »
Jacob Biamonte · Ivan Oseledets · Jens Eisert · Nadav Cohen · Guillaume Rabusseau · Xiao-Yang Liu -
2017 Poster: Hierarchical Methods of Moments »
Matteo Ruffini · Guillaume Rabusseau · Borja Balle -
2017 Poster: Multitask Spectral Learning of Weighted Automata »
Guillaume Rabusseau · Borja Balle · Joelle Pineau -
2016 Poster: Low-Rank Regression with Tensor Responses »
Guillaume Rabusseau · Hachem Kadri